qpms/apps/transop-ewald/transop_ewald.c

248 lines
8.6 KiB
C
Raw Permalink Normal View History

// c99 -o ew_gen_kin -Wall -I ../.. -I ../../amos/ -O2 -ggdb -DQPMS_VECTORS_NICE_TRANSFORMATIONS -DLATTICESUMS32 2dlattice_ewald.c ../translations.c ../ewald.c ../ewaldsf.c ../gaunt.c ../lattices2d.c ../latticegens.c ../bessel.c -lgsl -lm -lblas ../../amos/libamos.a -lgfortran ../error.c
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include "transop_ewald_cmdline.h"
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <errno.h>
#define LATTICESUMS32
#include <qpms/translations.h>
#include <qpms/lattices.h>
#include <qpms/qpms_error.h>
#include <gsl/gsl_const_mksa.h>
#include <qpms/parsing.h>
// Command line args parsing progress:
// output
// base-vector DONE 2D
// error-estimate-output
// normalisation
// csphase
// Ewald-parameter
// frequency-unit
// lMax DONE
// refractive-index DONE
// particle DONE
// pointfile
// point
// omegafile DONE, TODO unit conversion
// omega DONE, TODO unit conversion
// kfile DONE 2D
// k DONE 2D
#define MAXKCOUNT 200 // 200 // serves as klist default buffer size
//#define KMINCOEFF 0.783 //0.9783 // 0.783 // not used if KSTDIN defined
//#define KMAXCOEFF 1.217 //1.0217 // 1.217 // not used if KSTDIN defined
#define KLAYERS 20
#define RLAYERS 20
const double s3 = 1.732050807568877293527446341505872366942805253810380628055;
//const qpms_y_t lMax = 3;
//const double REFINDEX = 1.52;
static const double SCUFF_OMEGAUNIT = 3e14;
static const double hbar = GSL_CONST_MKSA_PLANCKS_CONSTANT_HBAR;
static const double eV = GSL_CONST_MKSA_ELECTRON_CHARGE;
static const double c0 = GSL_CONST_MKSA_SPEED_OF_LIGHT;
int main (int argc, char **argv) {
struct gengetopt_args_info args_info;
int retval = cmdline_parser(argc, argv, *args_info);
if (retval) return retval;
// Parse lattice vectors
const int latdim = args_info.base_vector_given;
QPMS_ENSURE(latdim == 2,
"Sorry, only 2d lattices supported, but %d basis vectors were given\n",
latdim);
cart2_t b[latdim];
for (int i = 0; i < latdim; ++i) {
const int gotnumbers = qpms_parse_ndoubles(
(*double) &(b[i].x), latdim,
args_info.base_vector_arg[i]);
QPMS_ENSURE(latdim == gotnumbers,
"%d. base vector contained %d numbers, expected %d\n",
i, gotnumbers, latdim);
}
// N.B. this is 2D specific, TODO generalize when Nd sum supported
const double unitcell_area = l2d_unitcell_area(b[0], b[1]);
l2d_reduceBasis(b[0], b[1], b, b+1);
const qpms_l_t lMax = args_info.lMax_arg;
QPMS_ENSURE(lMax > 0, "invalid value of lMax: %d", (int)lMax);
const double refindex = args_info.refractive_index_arg;
// Parse all particle positions
const int npart = args_info.particle_given;
if(!npart) ++npart;
cart2_t part_positions[npart];
if(!args_info.particle_given)
part_positions[0].x = part_positions[0].y = 0;
else for (int i = 0; i < npart; ++i) {
const int gotnumbers = qpms_parse_ndoubles(
(*double) &(part_positions[i].x), latdim,
args_info.particle_arg[i]);
QPMS_ENSURE(latdim == gotnumbers,
"%d. particle position contained %d coordinates, expected %d\n",
i, gotnumbers, latdim);
}
QPMS_ENSURE(!args_info.k_omega_meshgrid_mode_counter !=
!args_info.k_omega_points_mode_counter,
"THIS IS A BUG. Only one mode ((k, ω) tuples, or k, ω lists) allowed.");
// ===================== k, ω grid mode =====================
if (args_info.k_omega_meshgrid_mode_counter) {
size_t omegacount = 0;
double *omegalist = NULL;
for (int i = 0; i < args_info.omega_given; ++i) // freqs from command line
omegacount = qpms_parse_doubles(&omegalist, omegacount,
args_info.omega_arg[i]);
for (int i = 0; i < args_info.omegafile_given; ++i) // freqs from file
omegacount = qpms_parse_doubles_fromfile(&omegalist, omegacount,
args_info.omegafile_arg[i]);
size_t kc_count = 0;
double *kclist = NULL;
for (int i = 0; i < args_info.k_given; ++i) {// ks from command line
kc_count = qpms_parse_doubles(&kclist, kc_count, args_info.k_arg[i]);
QPMS_ENSURE(0 == kc_count % latdim,
"Provided number of k components (cum. %zd) not compatible with the "
"lattice dimension (%d): %s", kc_count, latdim, args_info.k_arg[i]);
}
for (int i = 0; i < args_info.kfile_given; ++i) {//ks from file
kc_count = qpms_parse_doubles_fromfile(&kclist, kc_count,
args_info.kfile_arg[i]);
QPMS_ENSURE(0 == kc_count % latdim,
"Provided number of k components (cum. %zd) not compatible with the "
"lattice dimension (%d) in file %s", kc_count, latdim,
args_info.kfile_arg[i]);
}
// 2D specific, TODO generalize when Nd supported
cart2_t klist[kc_count/2];
for (size_t i = 0; i < kc_count/2; ++i)
klist[i] = {kclist[2*i], kclist[2*i+1]};
free(kclist);
TODO;
} else if (args_info.k_omega_points_mode_counter) { // explic. point mode
TODO;
}
const double scuffomega = strtod(argv[7], NULL);
//#ifdef KSTDIN
size_t kcount = 0;
size_t klist_capacity = MAXKCOUNT;
cart2_t *klist = malloc(sizeof(cart2_t) * klist_capacity);
while (scanf("%lf %lf", &(klist[kcount].x), &(klist[kcount].y)) == 2) {
++kcount;
if(kcount >= klist_capacity) {
klist_capacity *= 2;
klist = realloc(klist, sizeof(cart2_t) * klist_capacity);
if (klist == NULL) abort();
}
}
//#else
#if 0
cart2_t klist[MAXKCOUNT];
int kcount = MAXKCOUNT;
for (int i = 0; i < kcount; ++i) { // TODO this should depend on orientation...
klist[i].x = 0;
klist[i].y = (4.* M_PI / 3. / LATTICE_A) * (KMINCOEFF + (KMAXCOEFF-KMINCOEFF)/kcount*i);
}
#endif
// TODO more clever way of determining the cutoff
const double a = sqrt(unitcell_area); // N.B. different meaning than before
const double maxR = 25 * a;
const double maxK = 25 * 2*M_PI/a;
qpms_trans_calculator *c = qpms_trans_calculator_init(lMax, QPMS_NORMALISATION_POWER_CS); // vai POWER_CS?
FILE *out, *ferr = NULL;
if (args_info.error_estimate_output_given) {
if (!strcmp(args_info.error_estimate_output_arg, "-"))
ferr = stdout;
else
ferr = fopen(args_info.error_estimate_output_arg, "w");
QPMS_ENSURE(ferr, "Could not open error output file %s",
args_info.error_estimate_output_arg);
if (args_info.output_given && !strcmp(args_info.output_arg, "-")
&& args_info.output_arg[0]) {
out = fopen(args_info.output_arg, "w");
QPMS_ENSURE(out, "Could not open output file %s", args_info.output_arg);
} else
out = stdout;
{
const double omega = scuffomega * SCUFF_OMEGAUNIT;
const double EeV = omega * hbar / eV;
const double k0_vac = omega / c0;
const double k0_eff = k0_vac * refindex;
const double eta = 5.224/a; // FIXME quite arbitrary, but this one should work
// indices : destpart (A/B-particle), srcpart (A/B-particle), coeff type (A/B- type), desty, srcy
complex double W[npart][npart][2][c->nelem][c->nelem];
double Werr[npart][npart][npart][c->nelem][c->nelem];
for (size_t ki = 0; ki < kcount; ++ki) {
cart2_t beta = klist[ki];
memset(W, 0, sizeof(W));
if(ferr)
memset(Werr, 0, sizeof(Werr));
const ptrdiff_t deststride = &(W[0][0][0][1][0]) - &(W[0][0][0][0][0]);
const ptrdiff_t srcstride = &(W[0][0][0][0][1]) - &(W[0][0][0][0][0]);
assert (srcstride == 1 && deststride == c->nelem);
for (size_t ps = 0; ps < npart; ++ps) for (size_t pd = 0; pd < npart; ++pd)
// TODO optimize (calculate only once for each particle shift; especially if pd == ps)
qpms_trans_calculator_get_AB_arrays_e32(c,
&(W[pd][ps][0][0][0]), ferr ? &(Werr[pd][ps][0][0][0]) : NULL, // Adest, Aerr,
&(W[pd][ps][1][0][0]), ferr ? &(Werr[pd][ps][1][0][0]) : NULL, // Bdest, Berr,
deststride, srcstride,
eta, k0_eff, b1, b2,
beta,
cart2_substract(part_positions[pd], part_positions[ps]), // CHECKSIGN
maxR, maxK
);
// TODO CHECK B<-A vs. A<-B relation
fprintf(out, "%.16g\t%.16g\t%.16g\t%.16g\t%.16g\t",
scuffomega, EeV, k0_eff, beta.x, beta.y);
if(ferr) fprintf(ferr, "%.16g\t%.16g\t%16g\t%.16g\t%.16g\t",
scuffomega, EeV, k0_eff, beta.x, beta.y);
size_t totalelems = sizeof(W) / sizeof(complex double);
for (size_t i = 0; i < totalelems; ++i) {
complex double w = ((complex double *)W)[i];
fprintf(out, "%.16g\t%.16g\t", creal(w), cimag(w));
if (ferr)
fprintf(ferr, "%.3g\t", ((double *)Werr)[i]);
}
fputc('\n', out);
if(ferr) fputc('\n', ferr);
}
}
fclose(out);
if(ferr) fclose(ferr);
//#ifdef KSTDIN
free(klist);
//#endif
qpms_trans_calculator_free(c);
}