qpms/besseltransforms/7-7-5

11 lines
2.2 KiB
Plaintext
Raw Permalink Normal View History

Integrate[(E^(-(c*x) + I*k0*x)*(1 - E^(-(c*x)))^7*BesselJ[5, k*x])/(k0^7*x^6), {x, 0, Infinity}, Assumptions -> n == 5 && q == 7 && κ == 7 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0]
2 2 4 4 6 6 8 8
-8 c x + I k0 x c x 7 2 2 4 4 6 6 8 8 Pi 99 (79857106875 - 15575938560 k x + 28894494720 k x - 38168166400 k x + 2147483648 k x ) (Cos[k x] + Sin[k x])
-(E (-1 + E ) (8 k x (-376469218125 + 156436600320 k x + 752777625600 k x - 151145938944 k x + 2147483648 k x ) Cos[-- + k x] - ---------------------------------------------------------------------------------------------------------------------))
4 Sqrt[2]
Integrate::idiv: Integral of -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- does not converge on {0, Infinity}.
19/2 7 31/2
8589934592 k k0 Sqrt[2 Pi] x
Series[Integrate[(E^(-(c*x) + I*k0*x)*(1 - E^(-(c*x)))^7*BesselJ[5, k*x])/(k0^7*x^6), {x, 0, Infinity}, Assumptions -> n == 5 && q == 7 && κ == 7 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0], {k, Infinity, 10}]