qpms/qpms/apps/hexlattice_wrongewald.c

345 lines
14 KiB
C
Raw Permalink Normal View History

// c99 -ggdb -O2 -DLATTICESUMS -I .. hexlattice_ewald.c ../translations.c ../bessels.c ../lrhankel_recspace_dirty.c ../gaunt.c -lm -lgsl -lblas
#include <stdlib.h>
#include <string.h>
#include <stddef.h>
#include <math.h>
#include <stdio.h>
#include "kahansum.h"
#include "vectors.h"
#include <gsl/gsl_const_mksa.h>
#include <gsl/gsl_math.h>
#include "qpms_types.h"
#include "translations.h"
#define MAXOMEGACOUNT 1000
#define MAXKCOUNT 100
const double s3 = 1.732050807568877293527446341505872366942805253810380628055;
// IMPORTANT: lattice properties here
const qpms_y_t lMax = 2;
const double REFINDEX = 1.52;
const double LATTICE_H = 576e-9;
static const double SCUFF_OMEGAUNIT = 3e14;
static const double hbar = GSL_CONST_MKSA_PLANCKS_CONSTANT_HBAR;
static const double eV = GSL_CONST_MKSA_ELECTRON_CHARGE;
static const double c0 = GSL_CONST_MKSA_SPEED_OF_LIGHT;
static const double CC = 0.1;
// For sorting the points by distance from origin / radius
int cart2_cmpr (const void *p1, const void *p2) {
const cart2_t *p1t = (const cart2_t *)p1;
const cart2_t *p2t = (const cart2_t *)p2;
double r21 = cart2norm(*p1t);
double r22 = cart2norm(*p2t);
if (r21 < r22) return -1;
else if (r21 > r22) return 1;
else return 0;
}
typedef struct {
ptrdiff_t npoints; // number of lattice points.
ptrdiff_t capacity; // for how much points memory is allocated
double maxR; // circle radius, points <= R
cart2_t *points;
} latticepoints_circle_t;
void sort_cart2points_by_r(cart2_t *points, size_t nmemb) {
qsort(points, nmemb, sizeof(cart2_t), cart2_cmpr);
}
void latticepoints_circle_free(latticepoints_circle_t *c) {
free(c->points);
c->capacity = 0;
}
// "horizontal" orientation of the adjacent A, B points
latticepoints_circle_t generate_hexpoints_hor(double h, double R, cart2_t offset /* if zero, an A is in the origin */) {
latticepoints_circle_t lat;
lat.maxR = R;
lat.npoints = 0;
int nmax = R / (1.5 * h) + 2; // max no of lattice shifts in each direction (with reserve)
double unitcellS = s3 * 3 / 2 * h * h; // unit cell area
double flcapacity = 5 + 2 * (R + 5*h) * (R + 5*h) * M_PI / unitcellS; // should be enough with some random reserve
lat.capacity = flcapacity;
lat.points = malloc(lat.capacity *sizeof(cart2_t));
cart2_t BAoffset = {h, 0};
cart2_t a1 = {-1.5*h, s3/2 *h};
cart2_t a2 = {1.5*h, s3/2 *h};
for (ptrdiff_t i1 = -nmax; i1 <= nmax; ++i1)
for (ptrdiff_t i2 = -nmax; i2 <= nmax; ++i2) {
cart2_t Apoint = cart2_add(offset, cart2_add(cart2_scale(i1, a1), cart2_scale(i2, a2)));
if (lat.npoints >= lat.capacity)
printf("%zd %zd %g %g %g %g\n", lat.npoints, lat.capacity, flcapacity, R, h, unitcellS); if (cart2norm(Apoint) <= R) {
assert(lat.npoints < lat.capacity);
lat.points[lat.npoints] = Apoint;
lat.npoints++;
}
cart2_t Bpoint = cart2_add(Apoint, BAoffset);
if (cart2norm(Bpoint) <= R) {
assert(lat.npoints < lat.capacity);
lat.points[lat.npoints] = Bpoint;
lat.npoints++;
}
}
sort_cart2points_by_r(lat.points, lat.npoints);
return lat;
}
latticepoints_circle_t generate_tripoints_ver(double a, double R, cart2_t offset /* if zero, an A is in the origin */) {
double h = a / s3;
latticepoints_circle_t lat;
lat.maxR = R;
lat.npoints = 0;
int nmax = R / (1.5 * h) + 2; // max no of lattice shifts in each direction (with reserve)
double unitcellS = (s3 * 3) / 2 * h * h; // unit cell area
double flcapacity = 5 + (R + 3*a) * (R + 3*a) * M_PI / unitcellS; // should be enough with some random reserve
lat.capacity = flcapacity; // should be enough with some random reserve
lat.points = malloc(lat.capacity *sizeof(cart2_t));
cart2_t a1 = {-1.5*h, s3/2 *h};
cart2_t a2 = {1.5*h, s3/2 *h};
for (ptrdiff_t i1 = -nmax; i1 <= nmax; ++i1)
for (ptrdiff_t i2 = -nmax; i2 <= nmax; ++i2) {
cart2_t Apoint = cart2_add(offset, cart2_add(cart2_scale(i1, a1), cart2_scale(i2, a2)));
if (cart2norm(Apoint) <= R) {
if (lat.npoints >= lat.capacity)
printf("%zd %zd %g %g %g %g\n", lat.npoints, lat.capacity, flcapacity, R, a, unitcellS);
assert(lat.npoints < lat.capacity);
lat.points[lat.npoints] = Apoint;
lat.npoints++;
}
}
sort_cart2points_by_r(lat.points, lat.npoints);
return lat;
}
latticepoints_circle_t generate_tripoints_hor(double a, double R, cart2_t offset /* if zero, an A is in the origin */) {
double h = a / s3;
latticepoints_circle_t lat;
lat.maxR = R;
lat.npoints = 0;
int nmax = R / (1.5 * h) + 2; // max no of lattice shifts in each direction (with reserve)
double unitcellS = s3 * 3 / 2 * h * h; // unit cell area
double flcapacity = 5 + (R + 3*a) * (R + 3*a) * M_PI / unitcellS; // should be enough with some random reserve
lat.capacity = flcapacity; // should be enough with some random reserve
lat.points = malloc(lat.capacity *sizeof(cart2_t));
cart2_t a1 = {s3/2 *h, -1.5*h};
cart2_t a2 = {s3/2 *h, 1.5 * h};
for (int i1 = -nmax; i1 <= nmax; ++i1)
for (int i2 = -nmax; i2 <= nmax; ++i2) {
if (lat.npoints >= lat.capacity)
printf("%zd %zd %.12g %g %g %g\n", lat.npoints, lat.capacity, flcapacity, R, a, unitcellS);
cart2_t Apoint = cart2_add(offset, cart2_add(cart2_scale(i1, a1), cart2_scale(i2, a2)));
if (cart2norm(Apoint) <= R) {
assert(lat.npoints < lat.capacity);
lat.points[lat.npoints] = Apoint;
lat.npoints++;
}
}
sort_cart2points_by_r(lat.points, lat.npoints);
return lat;
}
int main (int argc, char **argv) {
const double LATTICE_A = s3*LATTICE_H;
const double INVLATTICE_A = 4 * M_PI / s3 / LATTICE_A;
const double MAXR_REAL = 100 * LATTICE_H;
const double MAXR_K = 100 * INVLATTICE_A;
char *omegafile = argv[1];
// char *kfile = argv[2]; // not used
char *outfile = argv[3];
char *outlongfile = argv[4];
char *outshortfile = argv[5];
double scuffomegas[MAXOMEGACOUNT];
cart2_t klist[MAXKCOUNT];
FILE *f = fopen(omegafile, "r");
int omegacount = 0;
while (fscanf(f, "%lf", scuffomegas + omegacount) == 1){
assert(omegacount < MAXOMEGACOUNT);
++omegacount;
}
fclose(f);
/*f = fopen(kfile, "r");
int kcount = 100;
while (fscanf(f, "%lf %lf", &(klist[kcount].x), &(klist[kcount].y)) == 2) {
assert(kcount < MAXKCOUNT);
++kcount;
}
fclose(f);
*/
int kcount = MAXKCOUNT;
for (int i = 0; i < kcount; ++i) {
klist[i].x = 0;
klist[i].y = 2. * 4. * M_PI / 3. / LATTICE_A / kcount * i;
}
const double refindex = REFINDEX;
const double h = LATTICE_H;
const double a = h * s3;
const double rec_a = 4*M_PI/s3/a;
// generation of the real-space lattices
const cart2_t cart2_0 = {0, 0};
const cart2_t ABoffset = {h, 0};
const cart2_t BAoffset = {-h, 0};
//const cart2_t ab_particle_offsets[2][2] = {{ {0, 0}, {h, 0} }, {-h, 0}, {0, 0}};
// THIS IS THE LATTICE OF r_b
latticepoints_circle_t lattice_0offset = generate_tripoints_ver(a, MAXR_REAL, cart2_0);
// these have to have the same point order, therefore we must make the offset verision manually to avoid sorting;
latticepoints_circle_t lattice_ABoffset, lattice_BAoffset;
lattice_ABoffset.points = malloc(lattice_0offset.npoints * sizeof(cart2_t));
lattice_ABoffset.capacity = lattice_0offset.npoints * sizeof(cart2_t);
lattice_ABoffset.npoints = lattice_ABoffset.capacity;
lattice_BAoffset.points = malloc(lattice_0offset.npoints * sizeof(cart2_t));
lattice_BAoffset.capacity = lattice_0offset.npoints * sizeof(cart2_t);
lattice_BAoffset.npoints = lattice_BAoffset.capacity;
for (int i = 0; i < lattice_0offset.npoints; ++i) {
lattice_ABoffset.points[i] = cart2_add(lattice_0offset.points[i], ABoffset);
lattice_BAoffset.points[i] = cart2_add(lattice_0offset.points[i], BAoffset);
}
// reciprocal lattice, without offset DON'T I NEED REFINDEX HERE? (I DON'T THINK SO.)
latticepoints_circle_t reclattice = generate_tripoints_hor(rec_a, MAXR_K, cart2_0);
qpms_trans_calculator *c = qpms_trans_calculator_init(lMax, QPMS_NORMALISATION_POWER_CS);
FILE *out = fopen(outfile, "w");
FILE *outlong = fopen(outlongfile, "w");
FILE *outshort = fopen(outshortfile, "w");
// as in eq. (5) in my notes
double WL_prefactor = 4*M_PI/(a*a)/s3 / /*??*/ (4*M_PI*M_PI);
for (int omegai = 0; omegai < omegacount; ++omegai) {
double scuffomega = scuffomegas[omegai];
double omega = scuffomega * SCUFF_OMEGAUNIT;
double EeV = omega * hbar / eV;
double k0_vac = omega / c0;
double k0_eff = k0_vac * refindex; // this one will be used with the real x geometries
double cv = CC * k0_eff;
complex double Abuf[c->nelem][c->nelem], Bbuf[c->nelem][c->nelem];
// indices : destpart (A/B-particle), srcpart (A/B-particle), coeff type (A/B- type), desty, srcy
complex double WS[2][2][2][c->nelem][c->nelem];
complex double WS_comp[2][2][2][c->nelem][c->nelem];
complex double WL[2][2][2][c->nelem][c->nelem];
complex double WL_comp[2][2][2][c->nelem][c->nelem];
for (int ki = 0; ki < kcount; ++ki) {
cart2_t k = klist[ki];
memset(WS, 0, sizeof(WS));
memset(WS_comp, 0, sizeof(WS_comp));
memset(WL, 0, sizeof(WL));
memset(WL_comp, 0, sizeof(WL_comp));
for (int bi = 0; bi < lattice_0offset.npoints; ++bi) {
cart2_t point0 = lattice_0offset.points[bi];
double phase = cart2_dot(k,point0);
complex double phasefac = cexp(I*phase);
if (point0.x || point0.y) { // skip the singular point
qpms_trans_calculator_get_shortrange_AB_arrays(c, (complex double *) Abuf, (complex double *) Bbuf, c->nelem, 1,
cart22sph(cart2_scale(k0_eff,lattice_0offset.points[bi])), 3, 2, 5, CC);
for (int desty = 0; desty < c->nelem; ++desty)
for (int srcy = 0; srcy < c->nelem; ++srcy) {
ckahanadd(&(WS[0][0][0][desty][srcy]),&(WS_comp[0][0][0][desty][srcy]),Abuf[desty][srcy] * phasefac);
ckahanadd(&(WS[0][0][1][desty][srcy]),&(WS_comp[0][0][1][desty][srcy]),Bbuf[desty][srcy] * phasefac);
}
}
qpms_trans_calculator_get_shortrange_AB_arrays(c, (complex double *) Abuf, (complex double *) Bbuf, c->nelem, 1,
cart22sph(cart2_scale(k0_eff,lattice_ABoffset.points[bi])), 3, 2, 5, CC);
for (int desty = 0; desty < c->nelem; ++desty)
for (int srcy = 0; srcy < c->nelem; ++srcy) {
ckahanadd(&(WS[0][1][0][desty][srcy]),&(WS_comp[0][1][0][desty][srcy]),Abuf[desty][srcy] * phasefac);
ckahanadd(&(WS[0][1][1][desty][srcy]),&(WS_comp[0][1][1][desty][srcy]),Bbuf[desty][srcy] * phasefac);
}
qpms_trans_calculator_get_shortrange_AB_arrays(c, (complex double *) Abuf, (complex double *) Bbuf, c->nelem, 1,
cart22sph(cart2_scale(k0_eff,lattice_BAoffset.points[bi])), 3, 2, 5, CC);
for (int desty = 0; desty < c->nelem; ++desty)
for (int srcy = 0; srcy < c->nelem; ++srcy) {
ckahanadd(&(WS[1][0][0][desty][srcy]),&(WS_comp[1][0][0][desty][srcy]),Abuf[desty][srcy] * phasefac);
ckahanadd(&(WS[1][0][1][desty][srcy]),&(WS_comp[1][0][1][desty][srcy]),Bbuf[desty][srcy] * phasefac);
}
// WS[1][1] is the same as WS[0][0], so copy in the end rather than double-summing
}
for (int desty = 0; desty < c->nelem; ++desty)
for (int srcy = 0; srcy < c->nelem; ++srcy)
for (int ctype = 0; ctype < 2; ctype++)
WS[1][1][ctype][desty][srcy] = WS[0][0][ctype][desty][srcy];
// WS DONE
for (int Ki = 0; Ki < reclattice.npoints; ++Ki) {
cart2_t K = reclattice.points[Ki];
cart2_t k_K = cart2_substract(k, K);
double phase_AB =
#ifdef SWAPSIGN1
-
#endif
cart2_dot(k_K, ABoffset); // And maybe the sign is excactly opposite!!! FIXME TODO CHECK
complex double phasefacs[2][2];
phasefacs[0][0] = phasefacs[1][1] = 1;
phasefacs[1][0] = cexp(I * phase_AB); // sign???
phasefacs[0][1] = cexp(- I * phase_AB); // sign???
// FIXME should I skip something (such as the origin?)
qpms_trans_calculator_get_2DFT_longrange_AB_arrays(c, (complex double *) Abuf, (complex double *) Bbuf, c->nelem, 1,
cart22sph(k_K), 3, 2, 5, cv, k0_eff);
for (int dp = 0; dp < 2; dp++)
for (int sp = 0; sp < 2; sp++)
for (int dy = 0; dy < c->nelem; dy++)
for (int sy = 0; sy < c->nelem; sy++) {
ckahanadd(&(WL[dp][sp][0][dy][sy]), &(WL_comp[dp][sp][0][dy][sy]), phasefacs[dp][sp] * Abuf[dy][sy] * WL_prefactor);
ckahanadd(&(WL[dp][sp][1][dy][sy]), &(WL_comp[dp][sp][1][dy][sy]), phasefacs[dp][sp] * Bbuf[dy][sy] * WL_prefactor);
}
}
fprintf(outshort, "%.16g\t%.16g\t%16g\t%.16g\t%.16g\t",
scuffomega, EeV, k0_eff, k.x, k.y);
fprintf(outlong, "%.16g\t%.16g\t%16g\t%.16g\t%.16g\t",
scuffomega, EeV, k0_eff, k.x, k.y);
fprintf(out, "%.16g\t%.16g\t%16g\t%.16g\t%.16g\t",
scuffomega, EeV, k0_eff, k.x, k.y);
size_t totalelems = sizeof(WL) / sizeof(complex double);
for (int i = 0; i < totalelems; ++i) {
complex double ws = ((complex double *)WS)[i];
complex double wl = ((complex double *)WL)[i];
complex double w = ws+wl;
fprintf(outshort, "%.16g\t%.16g\t", creal(ws), cimag(ws));
fprintf(outlong, "%.16g\t%.16g\t", creal(wl), cimag(wl));
fprintf(out, "%.16g\t%.16g\t", creal(w), cimag(w));
}
fputc('\n', outshort);
fputc('\n', outlong);
fputc('\n', out);
}
}
fclose(out);
fclose(outlong);
fclose(outshort);
}
#if 0
int main (int argc, char **argv) {
cart2_t offset = {0,0};
latticepoints_circle_t lat = generate_tripoints_ver(1, 200, offset);
for (int i = 0; i < lat.npoints; ++i)
printf("%g %g %g\n", lat.points[i].x, lat.points[i].y, cart2norm(lat.points[i]));
latticepoints_circle_free(&lat);
}
#endif