qpms/lepaper/infinite-old.lyx

497 lines
10 KiB
Plaintext
Raw Normal View History

#LyX 2.4 created this file. For more info see https://www.lyx.org/
\lyxformat 583
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options false
\maintain_unincluded_children false
\language english
\language_package none
\inputencoding utf8
\fontencoding default
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_roman_osf false
\font_sans_osf false
\font_typewriter_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\float_placement class
\float_alignment class
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 0
\use_package cancel 0
\use_package esint 1
\use_package mathdots 0
\use_package mathtools 0
\use_package mhchem 0
\use_package stackrel 0
\use_package stmaryrd 0
\use_package undertilde 0
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 0
\use_minted 0
\use_lineno 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tablestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Subsection
Periodic systems and mode analysis
\begin_inset CommandInset label
LatexCommand label
name "subsec:Periodic-systems"
\end_inset
\end_layout
\begin_layout Standard
In an infinite periodic array of nanoparticles, the excitations of the nanoparti
cles take the quasiperiodic Bloch-wave form
\begin_inset Formula
\[
\coeffs_{i\nu}=e^{i\vect k\cdot\vect R_{i}}\coeffs_{\nu}
\]
\end_inset
(assuming the incident external field has the same periodicity,
\begin_inset Formula $\coeffr_{\mathrm{ext}(i\nu)}=e^{i\vect k\cdot\vect R_{i}}p_{\mathrm{ext}\left(\nu\right)}$
\end_inset
) where
\begin_inset Formula $\nu$
\end_inset
is the index of a particle inside one unit cell and
\begin_inset Formula $\vect R_{i},\vect R_{i'}\in\Lambda$
\end_inset
are the lattice vectors corresponding to the sites (labeled by multiindices
\begin_inset Formula $i,i'$
\end_inset
) of a Bravais lattice
\begin_inset Formula $\Lambda$
\end_inset
.
The multiple-scattering problem (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:multiple scattering per particle a"
\end_inset
) then takes the form
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\coeffs_{i\nu}-T_{\nu}\sum_{(i',\nu')\ne\left(i,\nu\right)}S_{i\nu,i'\nu'}e^{i\vect k\cdot\left(\vect R_{i'}-\vect R_{i}\right)}\coeffs_{i\nu'}=T_{\nu}\coeffr_{\mathrm{ext}(i\nu)}
\]
\end_inset
or, labeling
\begin_inset Formula $W_{\nu\nu'}=\sum_{i';(i',\nu')\ne\left(i,\nu\right)}S_{i\nu,i'\nu'}e^{i\vect k\cdot\left(\vect R_{i'}-\vect R_{i}\right)}=\sum_{i';(i',\nu')\ne\left(0,\nu\right)}S_{0\nu,i'\nu'}e^{i\vect k\cdot\vect R_{i'}}$
\end_inset
and using the quasiperiodicity,
\begin_inset Formula
\begin{equation}
\sum_{\nu'}\left(\delta_{\nu\nu'}\mathbb{I}-T_{\nu}W_{\nu\nu'}\right)\coeffs_{\nu'}=T_{\nu}\coeffr_{\mathrm{ext}(\nu)},\label{eq:multiple scattering per particle a periodic}
\end{equation}
\end_inset
which reduces the linear problem (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:multiple scattering per particle a"
\end_inset
) to interactions between particles inside single unit cell.
A problematic part is the evaluation of the translation operator lattice
sums
\begin_inset Formula $W_{\nu\nu'}$
\end_inset
; this is performed using exponentially convergent Ewald-type representations
\begin_inset CommandInset citation
LatexCommand cite
key "linton_lattice_2010"
literal "true"
\end_inset
.
\end_layout
\begin_layout Standard
In an infinite periodic system, a nonlossy mode supports itself without
external driving, i.e.
such mode is described by excitation coefficients
\begin_inset Formula $a_{\nu}$
\end_inset
that satisfy eq.
(
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:multiple scattering per particle a periodic"
\end_inset
) with zero right-hand side.
That can happen if the block matrix
\begin_inset Formula
\begin{equation}
M\left(\omega,\vect k\right)=\left\{ \delta_{\nu\nu'}\mathbb{I}-T_{\nu}\left(\omega\right)W_{\nu\nu'}\left(\omega,\vect k\right)\right\} _{\nu\nu'}\label{eq:M matrix definition}
\end{equation}
\end_inset
from the left hand side of (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:multiple scattering per particle a periodic"
\end_inset
) is singular (here we explicitly note the
\begin_inset Formula $\omega,\vect k$
\end_inset
depence).
\end_layout
\begin_layout Standard
For lossy nanoparticles, however, perfect propagating modes will not exist
and
\begin_inset Formula $M\left(\omega,\vect k\right)$
\end_inset
will never be perfectly singular.
Therefore in practice, we get the bands by scanning over
\begin_inset Formula $\omega,\vect k$
\end_inset
to search for
\begin_inset Formula $M\left(\omega,\vect k\right)$
\end_inset
which have an
\begin_inset Quotes erd
\end_inset
almost zero
\begin_inset Quotes erd
\end_inset
singular value.
\end_layout
\begin_layout Section
\begin_inset ERT
status collapsed
\begin_layout Plain Layout
{
\end_layout
\end_inset
Symmetries
\begin_inset ERT
status collapsed
\begin_layout Plain Layout
}
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset CommandInset label
LatexCommand label
name "sm:symmetries"
\end_inset
\end_layout
\begin_layout Standard
A general overview of utilizing group theory to find lattice modes at high-symme
try points of the Brillouin zone can be found e.g.
in
\begin_inset CommandInset citation
LatexCommand cite
after "chapters 1011"
key "dresselhaus_group_2008"
literal "true"
\end_inset
; here we use the same notation.
\end_layout
\begin_layout Standard
We analyse the symmetries of the system in the same VSWF representation
as used in the
\begin_inset Formula $T$
\end_inset
-matrix formalism introduced above.
We are interested in the modes at the
\begin_inset Formula $\Kp$
\end_inset
-point of the hexagonal lattice, which has the
\begin_inset Formula $D_{3h}$
\end_inset
point symmetry.
The six irreducible representations (irreps) of the
\begin_inset Formula $D_{3h}$
\end_inset
group are known and are available in the literature in their explicit forms.
In order to find and classify the modes, we need to find a decomposition
of the lattice mode representation
\begin_inset Formula $\Gamma_{\mathrm{lat.mod.}}=\Gamma^{\mathrm{equiv.}}\otimes\Gamma_{\mathrm{vec.}}$
\end_inset
into the irreps of
\begin_inset Formula $D_{3h}$
\end_inset
.
The equivalence representation
\begin_inset Formula $\Gamma^{\mathrm{equiv.}}$
\end_inset
is the
\begin_inset Formula $E'$
\end_inset
representation as can be deduced from
\begin_inset CommandInset citation
LatexCommand cite
after "eq. (11.19)"
key "dresselhaus_group_2008"
literal "true"
\end_inset
, eq.
(11.19) and the character table for
\begin_inset Formula $D_{3h}$
\end_inset
.
\begin_inset Formula $\Gamma_{\mathrm{vec.}}$
\end_inset
operates on a space spanned by the VSWFs around each nanoparticle in the
unit cell (the effects of point group operations on VSWFs are described
in
\begin_inset CommandInset citation
LatexCommand cite
key "schulz_point-group_1999"
literal "true"
\end_inset
).
This space can be then decomposed into invariant subspaces of the
\begin_inset Formula $D_{3h}$
\end_inset
using the projectors
\begin_inset Formula $\hat{P}_{ab}^{\left(\Gamma\right)}$
\end_inset
defined by
\begin_inset CommandInset citation
LatexCommand cite
after "eq. (4.28)"
key "dresselhaus_group_2008"
literal "true"
\end_inset
.
This way, we obtain a symmetry adapted basis
\begin_inset Formula $\left\{ \vect b_{\Gamma,r,i}^{\mathrm{s.a.b.}}\right\} $
\end_inset
as linear combinations of VSWFs
\begin_inset Formula $\vswfs lm{p,t}$
\end_inset
around the constituting nanoparticles (labeled
\begin_inset Formula $p$
\end_inset
),
\begin_inset Formula
\[
\vect b_{\Gamma,r,i}^{\mathrm{s.a.b.}}=\sum_{l,m,p,t}U_{\Gamma,r,i}^{p,t,l,m}\vswfs lm{p,t},
\]
\end_inset
where
\begin_inset Formula $\Gamma$
\end_inset
stands for one of the six different irreps of
\begin_inset Formula $D_{3h}$
\end_inset
,
\begin_inset Formula $r$
\end_inset
labels the different realisations of the same irrep, and the last index
\begin_inset Formula $i$
\end_inset
going from 1 to
\begin_inset Formula $d_{\Gamma}$
\end_inset
(the dimensionality of
\begin_inset Formula $\Gamma$
\end_inset
) labels the different partners of the same given irrep.
The number of how many times is each irrep contained in
\begin_inset Formula $\Gamma_{\mathrm{lat.mod.}}$
\end_inset
(i.e.
the range of index
\begin_inset Formula $r$
\end_inset
for given
\begin_inset Formula $\Gamma$
\end_inset
) depends on the multipole degree cutoff
\begin_inset Formula $l_{\mathrm{max}}$
\end_inset
.
\end_layout
\begin_layout Standard
Each mode at the
\begin_inset Formula $\Kp$
\end_inset
-point shall lie in the irreducible spaces of only one of the six possible
irreps and it can be shown via
\begin_inset CommandInset citation
LatexCommand cite
after "eq. (2.51)"
key "dresselhaus_group_2008"
literal "true"
\end_inset
that, at the
\begin_inset Formula $\Kp$
\end_inset
-point, the matrix
\begin_inset Formula $M\left(\omega,\vect k\right)$
\end_inset
defined above takes a block-diagonal form in the symmetry-adapted basis,
\begin_inset Formula
\[
M\left(\omega,\vect K\right)_{\Gamma,r,i;\Gamma',r',j}^{\mathrm{s.a.b.}}=\frac{\delta_{\Gamma\Gamma'}\delta_{ij}}{d_{\Gamma}}\sum_{q}M\left(\omega,\vect K\right)_{\Gamma,r,q;\Gamma',r',q}^{\mathrm{s.a.b.}}.
\]
\end_inset
This enables us to decompose the matrix according to the irreps and to solve
the singular value problem in each irrep separately, as done in Fig.
\begin_inset CommandInset ref
LatexCommand ref
reference "smfig:dispersions"
\end_inset
(a).
\end_layout
\end_body
\end_document