10 lines
1.8 KiB
Plaintext
10 lines
1.8 KiB
Plaintext
|
Integrate[(E^(-(c*x) + I*k0*x)*(1 - E^(-(c*x)))^6*BesselJ[1, k*x])/(k0^4*x^3), {x, 0, Infinity}, Assumptions -> n == 1 && q == 4 && κ == 6 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0]
|
||
|
|
||
|
-7 c x + I k0 x c x 6 2 2 4 4 6 6 8 8 Pi 2 2 4 4 6 6 8 8 Pi
|
||
|
-(E (-1 + E ) (8 k x (-14783093325 + 1452971520 k x - 309657600 k x + 251658240 k x + 2147483648 k x ) Cos[-- + k x] - 3 (156043762875 - 11416204800 k x + 1589575680 k x - 587202560 k x + 2147483648 k x ) Sin[-- + k x]))
|
||
|
4 4
|
||
|
Integrate::idiv: Integral of ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ does not converge on {0, Infinity}.
|
||
|
19/2 4 25/2
|
||
|
8589934592 k k0 Sqrt[2 Pi] x
|
||
|
Series[Integrate[(E^(-(c*x) + I*k0*x)*(1 - E^(-(c*x)))^6*BesselJ[1, k*x])/(k0^4*x^3), {x, 0, Infinity}, Assumptions -> n == 1 && q == 4 && κ == 6 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0], {k, Infinity, 10}]
|