2018-03-28 11:52:50 +03:00
|
|
|
(-k^2 + 12*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 - 30*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 40*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 - 30*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 12*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 - 2*(-1 + Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^2 + k^2*Sqrt[Pi]*(I*Piecewise[{{0, k^2/k0^2 <= 1}}, (2*k0*Sqrt[k^2 - k0^2])/(k^2*Sqrt[Pi])] + Piecewise[{{(k^2 + 2*k0*(-k0 + Sqrt[-k^2 + k0^2]))/(k^2*Sqrt[Pi]), k^2/k0^2 < 1}, {(1 - (2*k0^2)/k^2)/Sqrt[Pi], k^2/k0^2 > 1}}, 0]))/(2*k^2*k0^2)
|
|
|
|
SeriesData[k, Infinity, {(-945*c^7)/k0^2 + ((315*I)*c^6)/k0, 0, (4725*(63*c^9 - (57*I)*c^8*k0 - 18*c^7*k0^2 + (2*I)*c^6*k0^3))/(4*k0^2)}, 7, 11, 1]
|