2017-09-13 19:34:02 +03:00
|
|
|
#LyX 2.1 created this file. For more info see http://www.lyx.org/
|
|
|
|
\lyxformat 474
|
|
|
|
\begin_document
|
|
|
|
\begin_header
|
|
|
|
\textclass article
|
|
|
|
\use_default_options true
|
|
|
|
\maintain_unincluded_children false
|
|
|
|
\language finnish
|
|
|
|
\language_package default
|
|
|
|
\inputencoding auto
|
|
|
|
\fontencoding global
|
|
|
|
\font_roman TeX Gyre Pagella
|
|
|
|
\font_sans default
|
|
|
|
\font_typewriter default
|
|
|
|
\font_math auto
|
|
|
|
\font_default_family default
|
|
|
|
\use_non_tex_fonts true
|
|
|
|
\font_sc false
|
|
|
|
\font_osf true
|
|
|
|
\font_sf_scale 100
|
|
|
|
\font_tt_scale 100
|
|
|
|
\graphics default
|
|
|
|
\default_output_format pdf4
|
|
|
|
\output_sync 0
|
|
|
|
\bibtex_command default
|
|
|
|
\index_command default
|
|
|
|
\paperfontsize 10
|
|
|
|
\spacing single
|
|
|
|
\use_hyperref true
|
|
|
|
\pdf_title "Sähköpajan päiväkirja"
|
|
|
|
\pdf_author "Marek Nečada"
|
|
|
|
\pdf_bookmarks true
|
|
|
|
\pdf_bookmarksnumbered false
|
|
|
|
\pdf_bookmarksopen false
|
|
|
|
\pdf_bookmarksopenlevel 1
|
|
|
|
\pdf_breaklinks false
|
|
|
|
\pdf_pdfborder false
|
|
|
|
\pdf_colorlinks false
|
|
|
|
\pdf_backref false
|
|
|
|
\pdf_pdfusetitle true
|
|
|
|
\papersize a3paper
|
|
|
|
\use_geometry true
|
|
|
|
\use_package amsmath 1
|
|
|
|
\use_package amssymb 1
|
|
|
|
\use_package cancel 1
|
|
|
|
\use_package esint 1
|
|
|
|
\use_package mathdots 1
|
|
|
|
\use_package mathtools 1
|
|
|
|
\use_package mhchem 1
|
|
|
|
\use_package stackrel 1
|
|
|
|
\use_package stmaryrd 1
|
|
|
|
\use_package undertilde 1
|
|
|
|
\cite_engine basic
|
|
|
|
\cite_engine_type default
|
|
|
|
\biblio_style plain
|
|
|
|
\use_bibtopic false
|
|
|
|
\use_indices false
|
|
|
|
\paperorientation portrait
|
|
|
|
\suppress_date false
|
|
|
|
\justification true
|
|
|
|
\use_refstyle 1
|
|
|
|
\index Index
|
|
|
|
\shortcut idx
|
|
|
|
\color #008000
|
|
|
|
\end_index
|
|
|
|
\leftmargin 1cm
|
|
|
|
\topmargin 5mm
|
|
|
|
\rightmargin 1cm
|
|
|
|
\bottommargin 1cm
|
|
|
|
\secnumdepth 3
|
|
|
|
\tocdepth 3
|
|
|
|
\paragraph_separation indent
|
|
|
|
\paragraph_indentation default
|
|
|
|
\quotes_language swedish
|
|
|
|
\papercolumns 1
|
|
|
|
\papersides 1
|
|
|
|
\paperpagestyle default
|
|
|
|
\tracking_changes false
|
|
|
|
\output_changes false
|
|
|
|
\html_math_output 0
|
|
|
|
\html_css_as_file 0
|
|
|
|
\html_be_strict false
|
|
|
|
\end_header
|
|
|
|
|
|
|
|
\begin_body
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
|
|
|
|
\lang english
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\uoft}[1]{\mathfrak{F}#1}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\uaft}[1]{\mathfrak{\mathbb{F}}#1}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\usht}[2]{\mathbb{S}_{#1}#2}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\bsht}[2]{\mathrm{S}_{#1}#2}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\pht}[2]{\mathfrak{\mathbb{H}}_{#1}#2}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\vect}[1]{\mathbf{#1}}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\ud}{\mathrm{d}}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\basis}[1]{\mathfrak{#1}}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\dc}[1]{Ш_{#1}}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\rec}[1]{#1^{-1}}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\recb}[1]{#1^{\widehat{-1}}}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\ints}{\mathbb{Z}}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\nats}{\mathbb{N}}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\reals}{\mathbb{R}}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\ush}[2]{Y_{#1,#2}}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\hgfr}{\mathbf{F}}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\ph}{\mathrm{ph}}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\kor}[1]{\underline{#1}}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\koru}[1]{\overline{#1}}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\hgf}{F}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
Let
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
\begin_layout Paragraph
|
|
|
|
|
|
|
|
\lang english
|
|
|
|
Large k
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
|
|
|
|
\lang english
|
|
|
|
\begin_inset Formula
|
|
|
|
\begin{eqnarray*}
|
|
|
|
\mbox{OK}\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\hgfr\left(\frac{2-q+n}{2},\frac{3-q+n}{2};1+n;\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)\\
|
|
|
|
\mbox{OK(D15.8.2)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}(\\
|
|
|
|
& & \pi\frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{2-q+n}{2}}}{Γ\left(\frac{3-q+n}{2}\right)\text{Γ}\left(1+n-\frac{2-q+n}{2}\right)}\hgfr\left(\begin{array}{c}
|
|
|
|
\frac{2-q+n}{2},\frac{2-q+n}{2}-\left(1+n\right)+1\\
|
|
|
|
1/2
|
|
|
|
\end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)\\
|
|
|
|
& - & \pi\frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{3-q+n}{2}}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(1+n-\frac{3-q+n}{2}\right)}\hgfr\left(\begin{array}{c}
|
|
|
|
\frac{3-q+n}{2},\frac{3-q+n}{2}-\left(1+n\right)+1\\
|
|
|
|
3/2
|
|
|
|
\end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right))\\
|
|
|
|
\mbox{OK20} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\pi(\\
|
|
|
|
& & \frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{2-q+n}{2}}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)}\hgfr\left(\begin{array}{c}
|
|
|
|
\frac{2-q+n}{2},\frac{2-q-n}{2}\\
|
|
|
|
1/2
|
|
|
|
\end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)\\
|
|
|
|
& - & \frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{3-q+n}{2}}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)}\hgfr\left(\begin{array}{c}
|
|
|
|
\frac{3-q+n}{2},\frac{3-q-n}{2}\\
|
|
|
|
3/2
|
|
|
|
\end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right))\\
|
|
|
|
\mbox{(D15.2.2)OK3a,b} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\pi\sum_{s=0}^{\infty}(\\
|
|
|
|
& & \frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{2-q+n}{2}}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)}\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{1}{2}+s\right)s!}\left(-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)^{s}\\
|
|
|
|
& - & \frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{3-q+n}{2}}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)}\frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3}{2}+s\right)s!}\left(-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)^{s})\\
|
|
|
|
\mbox{OK4a} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\kor{k^{n}}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\kor{\left(\sigma c-ik_{0}\right)^{2-q+n}}}\pi\sum_{s=0}^{\infty}\left(-1\right)^{s}(\\
|
|
|
|
& & \frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}k^{-2+q\kor{-n}-2s}\left(\sigma c-ik_{0}\right)^{\kor{2-q+n}+2s}\\
|
|
|
|
& - & \frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}k^{-3+q\kor{-n}-2s}\left(\sigma c-ik_{0}\right)^{\kor{3-q+n}+2s})\\
|
|
|
|
\mbox{OK4b} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}}\pi\sum_{s=0}^{\infty}\left(-1\right)^{s}(\\
|
|
|
|
& & \frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}\kor{k^{-2+q-2s}}\kor{\left(\sigma c-ik_{0}\right)^{2s}}\\
|
|
|
|
& - & \frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\kor{k^{-3+q-2s}}\kor{\left(\sigma c-ik_{0}\right)^{1+2s}})\\
|
|
|
|
\mbox{OK4c} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}}\pi\sum_{s=\kor 0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\\
|
|
|
|
& & \times\left(\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\
|
|
|
|
\mbox{OK4d} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}}\pi\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)
|
|
|
|
\end{eqnarray*}
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
the fact that the partial sum
|
|
|
|
\begin_inset Formula $\sum_{s=0}^{\left\lceil \kappa/2\right\rceil -1}\ldots$
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
is zero is shown in the old messy notes (or TODO later here)
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
|
|
|
|
\lang english
|
|
|
|
Using DLMF 5.5.5, which says
|
|
|
|
\begin_inset Formula $Γ(2z)=\pi^{-1/2}2^{2z-1}\text{Γ}(z)\text{Γ}(z+\frac{1}{2})$
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
we have
|
|
|
|
\begin_inset Formula
|
|
|
|
\[
|
|
|
|
\text{Γ}\left(2-q+n\right)=\frac{2^{1-q+n}}{\sqrt{\pi}}\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{3-q+n}{2}\right),
|
|
|
|
\]
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
so
|
|
|
|
\begin_inset Formula
|
|
|
|
\begin{eqnarray*}
|
|
|
|
\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\kor{\text{Γ}\left(2-q+n\right)}}{\kor{2^{n}}k_{0}^{q}}\kor{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\kor{\text{Γ}\left(\frac{3-q+n}{2}\right)}\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\kor{\text{Γ}\left(\frac{2-q+n}{2}\right)}\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\
|
|
|
|
& = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\koru{2^{1-q}}}{k_{0}^{q}}\koru{\sqrt{\pi}}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(\frac{\kor{\koru{\text{Γ}\left(\frac{2-q+n}{2}\right)}\left(\frac{2-q+n}{2}\right)_{s}}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\kor{\koru{\text{Γ}\left(\frac{3-q+n}{2}\right)}\left(\frac{3-q+n}{2}\right)_{s}}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\
|
|
|
|
& = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)
|
|
|
|
\end{eqnarray*}
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
Assuming that
|
|
|
|
\begin_inset Formula $\left\lceil \frac{\kappa}{2}\right\rceil $
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
is large enough so that all the divergent terms are cancelled, either the
|
|
|
|
left or the right part will become finite sums due to the
|
|
|
|
\begin_inset Quotes sld
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
extra
|
|
|
|
\begin_inset Quotes srd
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
Pochhammer
|
|
|
|
\begin_inset Formula $\left(\frac{3-q-n}{2}\right)_{s}$
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
or
|
|
|
|
\begin_inset Formula $\left(\frac{2-q-n}{2}\right)_{s}$
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
.
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
\begin_layout Subparagraph
|
|
|
|
|
|
|
|
\lang english
|
|
|
|
Special case
|
|
|
|
\begin_inset Formula $q=2,n=0$
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
|
|
|
|
\lang english
|
|
|
|
If
|
|
|
|
\begin_inset Formula $\kappa\ge2$
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
, the left part will drop and
|
|
|
|
\begin_inset Formula
|
|
|
|
\begin{eqnarray*}
|
|
|
|
\mbox{OKSq2n0b}\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-1}}{k_{0}^{2}}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(-\frac{\text{Γ}\left(\frac{1}{2}+s\right)\text{Γ}\left(\frac{1}{2}+s\right)}{\text{Γ}\left(\frac{1}{2}\right)\kor{\text{Γ}\left(\frac{3}{2}+s\right)}s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\
|
|
|
|
& = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-1}}{k_{0}^{2}}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(-\frac{\kor{\text{Γ}\left(\frac{1}{2}+s\right)}\text{Γ}\left(\frac{1}{2}+s\right)}{\text{Γ}\left(\frac{1}{2}\right)\koru{\kor{\text{Γ}\left(\frac{1}{2}+s\right)}\left(\frac{1}{2}+s\right)}s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\
|
|
|
|
& = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-1}}{k_{0}^{2}}\sum_{s=\kor{\left\lceil \frac{\kappa}{2}\right\rceil }}^{\infty}\left(-1\right)^{s}k^{-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(-\frac{\text{Γ}\left(\frac{1}{2}+s\right)}{\text{Γ}\left(\frac{1}{2}\right)\left(\frac{1}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\
|
|
|
|
\mbox{(explain!)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-1}}{k_{0}^{2}}\sum_{s=\koru 0}^{\infty}\left(-1\right)^{s}k^{-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(-\frac{\text{Γ}\left(\frac{1}{2}+s\right)}{\kor{\text{Γ}\left(\frac{1}{2}\right)}\left(\frac{1}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\
|
|
|
|
& = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-1}}{k_{0}^{2}\sqrt{\pi}}\frac{\left(\sigma c-ik_{0}\right)}{k}\kor{\sum_{s=0}^{\infty}\left(-1\right)^{s}\left(\frac{\sigma c-ik_{0}}{k}\right)^{2s}\frac{\text{Γ}\left(\frac{1}{2}+s\right)}{\left(\frac{1}{2}+s\right)s!}}\\
|
|
|
|
& = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-1}}{k_{0}^{2}\sqrt{\pi}}\frac{\left(\sigma c-ik_{0}\right)}{k}\frac{2\sqrt{\pi}\sinh^{-1}\left(\frac{\sigma c-ik_{0}}{k}\right)}{\frac{\sigma c-ik_{0}}{k}}\\
|
|
|
|
\mbox{OKSq2n0f} & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{1}{k_{0}^{2}}\sinh^{-1}\left(\frac{\sigma c-ik_{0}}{k}\right)
|
|
|
|
\end{eqnarray*}
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
where we used (TODO ref)
|
|
|
|
\begin_inset Formula
|
|
|
|
\[
|
|
|
|
\sum_{s=0}^{\infty}\frac{\text{Γ}\left(\frac{1}{2}+s\right)}{\left(\frac{1}{2}+s\right)s!}\left(-x\right)^{s}=\frac{2\sqrt{\pi}\sinh^{-1}\sqrt{x}}{\sqrt{x}}
|
|
|
|
\]
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
The final result has asymptotic behaviour of ...
|
|
|
|
for
|
|
|
|
\begin_inset Formula $k\to\infty$
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
.
|
|
|
|
\end_layout
|
|
|
|
|
2018-01-16 13:58:40 +02:00
|
|
|
\begin_layout Subparagraph
|
|
|
|
Special case
|
|
|
|
\begin_inset Formula $q=3,n=1$
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
\begin_inset Formula
|
|
|
|
\begin{eqnarray*}
|
|
|
|
\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\
|
|
|
|
& = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-2}}{k_{0}^{3}}\sqrt{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{1-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)
|
|
|
|
\end{eqnarray*}
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
Let's hope that the left term (sum) in the big round brackets is zero for
|
|
|
|
|
|
|
|
\begin_inset Formula $\kappa\ge3$
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
(verified numerically, see file xxx; and BTW numerics show that it is zero
|
|
|
|
also when
|
|
|
|
\begin_inset Formula $k<k_{0}$
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
and
|
|
|
|
\begin_inset Formula $\kappa\ge3$
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
), and therefore
|
|
|
|
\begin_inset Formula
|
|
|
|
\begin{eqnarray*}
|
|
|
|
\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\frac{\kor{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\\
|
|
|
|
& = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\frac{\koru{\text{Γ}\left(\frac{3-q+n}{2}+s\right)}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\\
|
|
|
|
\pht 1{s_{3,k_{0}}^{\textup{L}\kappa>3,c}}\left(k\right) & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-2}}{k_{0}^{3}}\sqrt{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}\kor{k^{1-2s}}\left(\sigma c-ik_{0}\right)^{2s}\frac{\text{Γ}\left(\frac{1}{2}+s\right)\left(-\frac{1}{2}\right)_{s}}{\text{Γ}\left(\frac{3}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\\
|
|
|
|
& = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-2}\koru k}{k_{0}^{3}}\sqrt{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}\koru{\left(\frac{\sigma c-ik_{0}}{k}\right)^{2s}}\frac{\text{Γ}\left(\frac{1}{2}+s\right)\left(-\frac{1}{2}\right)_{s}}{\text{Γ}\left(\frac{3}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}
|
|
|
|
\end{eqnarray*}
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
and Mathematica tells us that
|
|
|
|
\begin_inset Formula
|
|
|
|
\begin{eqnarray*}
|
|
|
|
\sum_{s=0}^{\infty}\frac{\text{Γ}\left(\frac{1}{2}+s\right)\left(-\frac{1}{2}\right)_{s}}{\text{Γ}\left(\frac{3}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}x^{s} & = & 2\frac{\sqrt{x\left(1-x\right)}\sin^{-1}\sqrt{x}}{\sqrt{\pi}\sqrt{x}}\\
|
|
|
|
\sum_{s=0}^{\infty}\frac{\text{Γ}\left(\frac{1}{2}+s\right)\left(-\frac{1}{2}\right)_{s}}{\text{Γ}\left(\frac{3}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}(-1)^{s}y^{2s} & = & 2\frac{y\sqrt{1+y^{2}}+\sinh^{-1}y}{\sqrt{\pi}y}
|
|
|
|
\end{eqnarray*}
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
so
|
|
|
|
\begin_inset Formula
|
|
|
|
\begin{eqnarray*}
|
|
|
|
\pht 1{s_{3,k_{0}}^{\textup{L}\kappa>3,c}}\left(k\right) & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\kor{2^{-2}}k}{k_{0}^{3}}\kor{\sqrt{\pi}\left(\frac{\sigma c-ik_{0}}{k}\right)}\kor 2\frac{\left(\frac{\sigma c-ik_{0}}{k}\right)\sqrt{1+\left(\frac{\sigma c-ik_{0}}{k}\right)^{2}}+\sinh^{-1}\left(\frac{\sigma c-ik_{0}}{k}\right)}{\kor{\sqrt{\pi}\left(\frac{\sigma c-ik_{0}}{k}\right)}}\\
|
|
|
|
& = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k}{2k_{0}^{3}}\left(\left(\frac{\sigma c-ik_{0}}{k}\right)\sqrt{1+\left(\frac{\sigma c-ik_{0}}{k}\right)^{2}}+\sinh^{-1}\left(\frac{\sigma c-ik_{0}}{k}\right)\right)
|
|
|
|
\end{eqnarray*}
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\end_layout
|
|
|
|
|
2017-09-13 19:34:02 +03:00
|
|
|
\begin_layout Paragraph
|
|
|
|
Small k
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
|
|
|
|
\lang english
|
|
|
|
\begin_inset Formula
|
|
|
|
\begin{eqnarray*}
|
|
|
|
\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\hgfr\left(\frac{2-q+n}{2},\frac{3-q+n}{2};1+n;\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)\\
|
|
|
|
\mbox{(D15.2.2)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\kor{Γ\left(2-q+n\right)}}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\sum_{s=0}^{\infty}\frac{\kor{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{3-q+n}{2}\right)_{s}}}{Γ(1+n+s)s!}\left(\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{s},\quad\left|\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right|<1
|
|
|
|
\end{eqnarray*}
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
Again we use
|
|
|
|
\begin_inset Formula
|
|
|
|
\[
|
|
|
|
\text{Γ}\left(2-q+n\right)=\frac{2^{1-q+n}}{\sqrt{\pi}}\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{3-q+n}{2}\right),
|
|
|
|
\]
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
so
|
|
|
|
\begin_inset Formula
|
|
|
|
\begin{eqnarray*}
|
2017-09-15 22:07:06 +03:00
|
|
|
\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \koru{\frac{2^{1-q\kor{+n}}}{\sqrt{\pi}}}\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}}{\kor{2^{n}}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\sum_{s=0}^{\infty}\frac{\koru{\text{Γ}\left(\frac{2-q+n}{2}+s\right)\text{Γ}\left(\frac{3-q+n}{2}+s\right)}}{\text{Γ}(1+n+s)s!}\left(\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{s}\\
|
|
|
|
\mbox{OKShort} & = & \frac{2^{1-q}}{\sqrt{\pi}}\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}}{k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\kor{\sum_{s=0}^{\infty}\frac{\text{Γ}\left(\frac{2-q+n}{2}+s\right)\text{Γ}\left(\frac{3-q+n}{2}+s\right)}{\text{Γ}(1+n+s)s!}\left(\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{s}}\\
|
|
|
|
\mbox{(D15.2.1)} & = & \frac{2^{1-q}}{\sqrt{\pi}}\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}}{k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\koru{\frac{\text{Γ}\left(1+n\right)}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{3-q+n}{2}\right)}\kor{\hgf\left(\begin{array}{c}
|
|
|
|
\frac{2-q+n}{2},\frac{3-q+n}{2}\\
|
|
|
|
1+n
|
|
|
|
\end{array};\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)}}
|
2017-09-13 19:34:02 +03:00
|
|
|
\end{eqnarray*}
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
\end_body
|
|
|
|
\end_document
|