2016-03-27 12:56:54 +03:00
|
|
|
|
import numpy as np
|
2016-03-27 13:16:37 +03:00
|
|
|
|
from qpms_c import *
|
2016-03-27 12:56:54 +03:00
|
|
|
|
ň = np.newaxis
|
|
|
|
|
from scipy.constants import epsilon_0 as ε_0, c, pi as π, e, hbar as ℏ, mu_0 as μ_0
|
|
|
|
|
eV = e
|
|
|
|
|
from scipy.special import lpmn, lpmv, sph_jn, sph_yn, poch
|
|
|
|
|
from scipy.misc import factorial
|
|
|
|
|
import math
|
|
|
|
|
import cmath
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Coordinate transforms for arrays of "arbitrary" shape
|
|
|
|
|
def cart2sph(cart,axis=-1):
|
|
|
|
|
if (cart.shape[axis] != 3):
|
|
|
|
|
raise ValueError("The converted array has to have dimension 3"
|
|
|
|
|
" along the given axis")
|
|
|
|
|
[x, y, z] = np.split(cart,3,axis=axis)
|
|
|
|
|
r = np.linalg.norm(cart,axis=axis,keepdims=True)
|
|
|
|
|
r_zero = np.logical_not(r)
|
|
|
|
|
θ = np.arccos(z/(r+r_zero))
|
|
|
|
|
φ = np.arctan2(y,x) # arctan2 handles zeroes correctly itself
|
|
|
|
|
return np.concatenate((r,θ,φ),axis=axis)
|
|
|
|
|
|
|
|
|
|
def sph2cart(sph, axis=-1):
|
|
|
|
|
if (sph.shape[axis] != 3):
|
|
|
|
|
raise ValueError("The converted array has to have dimension 3"
|
|
|
|
|
" along the given axis")
|
|
|
|
|
[r,θ,φ] = np.split(sph,3,axis=axis)
|
|
|
|
|
sinθ = np.sin(θ)
|
|
|
|
|
x = r * sinθ * np.cos(φ)
|
|
|
|
|
y = r * sinθ * np.sin(φ)
|
|
|
|
|
z = r * np.cos(θ)
|
|
|
|
|
return np.concatenate((x,y,z),axis=axis)
|
|
|
|
|
|
|
|
|
|
def sph_loccart2cart(loccart, sph, axis=-1):
|
|
|
|
|
"""
|
|
|
|
|
Transformation of vector specified in local orthogonal coordinates
|
|
|
|
|
(tangential to spherical coordinates – basis r̂,θ̂,φ̂) to global cartesian
|
|
|
|
|
coordinates (basis x̂,ŷ,ẑ)
|
|
|
|
|
SLOW FOR SMALL ARRAYS
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
loccart: ... TODO
|
|
|
|
|
the transformed vector in the local orthogonal coordinates
|
|
|
|
|
|
|
|
|
|
sph: ... TODO
|
|
|
|
|
the point (in spherical coordinates) at which the locally
|
|
|
|
|
orthogonal basis is evaluated
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
-------
|
|
|
|
|
output: ... TODO
|
|
|
|
|
The coordinates of the vector in global cartesian coordinates
|
|
|
|
|
"""
|
|
|
|
|
if (loccart.shape[axis] != 3):
|
|
|
|
|
raise ValueError("The converted array has to have dimension 3"
|
|
|
|
|
" along the given axis")
|
|
|
|
|
[r,θ,φ] = np.split(sph,3,axis=axis)
|
|
|
|
|
sinθ = np.sin(θ)
|
|
|
|
|
cosθ = np.cos(θ)
|
|
|
|
|
sinφ = np.sin(φ)
|
|
|
|
|
cosφ = np.cos(φ)
|
|
|
|
|
|
|
|
|
|
#x = r * sinθ * cosφ
|
|
|
|
|
#y = r * sinθ * sinφ
|
|
|
|
|
#z = r * cosθ
|
|
|
|
|
r̂x = sinθ * cosφ
|
|
|
|
|
r̂y = sinθ * sinφ
|
|
|
|
|
r̂z = cosθ
|
|
|
|
|
θ̂x = cosθ * cosφ
|
|
|
|
|
θ̂y = cosθ * sinφ
|
|
|
|
|
θ̂z = -sinθ
|
|
|
|
|
φ̂x = -sinφ
|
|
|
|
|
φ̂y = cosφ
|
|
|
|
|
φ̂z = np.zeros(φ̂y.shape)
|
|
|
|
|
r̂ = np.concatenate((r̂x,r̂y,r̂z),axis=axis)
|
|
|
|
|
θ̂ = np.concatenate((θ̂x,θ̂y,θ̂z),axis=axis)
|
|
|
|
|
φ̂ = np.concatenate((φ̂x,φ̂y,φ̂z),axis=axis)
|
|
|
|
|
[inr̂,inθ̂,inφ̂] = np.split(loccart,3,axis=axis)
|
|
|
|
|
out=inr̂*r̂+inθ̂*θ̂+inφ̂*φ̂
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
def sph_loccart_basis(sph, sphaxis=-1, cartaxis=None):
|
|
|
|
|
"""
|
|
|
|
|
Returns the local cartesian basis in terms of global cartesian basis.
|
|
|
|
|
sphaxis refers to the original dimensions
|
|
|
|
|
TODO doc
|
|
|
|
|
"""
|
|
|
|
|
if(cartaxis is None):
|
|
|
|
|
cartaxis = sph.ndim # default to last axis
|
|
|
|
|
[r,θ,φ] = np.split(sph,3,axis=sphaxis)
|
|
|
|
|
sinθ = np.sin(θ)
|
|
|
|
|
cosθ = np.cos(θ)
|
|
|
|
|
sinφ = np.sin(φ)
|
|
|
|
|
cosφ = np.cos(φ)
|
|
|
|
|
|
|
|
|
|
#x = r * sinθ * cosφ
|
|
|
|
|
#y = r * sinθ * sinφ
|
|
|
|
|
#z = r * cosθ
|
|
|
|
|
r̂x = sinθ * cosφ
|
|
|
|
|
r̂y = sinθ * sinφ
|
|
|
|
|
r̂z = cosθ
|
|
|
|
|
θ̂x = cosθ * cosφ
|
|
|
|
|
θ̂y = cosθ * sinφ
|
|
|
|
|
θ̂z = -sinθ
|
|
|
|
|
φ̂x = -sinφ
|
|
|
|
|
φ̂y = cosφ
|
|
|
|
|
φ̂z = np.zeros(φ̂y.shape)
|
|
|
|
|
#r̂ = np.concatenate((r̂x,r̂y,r̂z),axis=axis)
|
|
|
|
|
#θ̂ = np.concatenate((θ̂x,θ̂y,θ̂z),axis=axis)
|
|
|
|
|
#φ̂ = np.concatenate((φ̂x,φ̂y,φ̂z),axis=axis)
|
|
|
|
|
x = np.expand_dims(np.concatenate((r̂x,θ̂x,φ̂x), axis=sphaxis),axis=cartaxis)
|
|
|
|
|
y = np.expand_dims(np.concatenate((r̂y,θ̂y,φ̂y), axis=sphaxis),axis=cartaxis)
|
|
|
|
|
z = np.expand_dims(np.concatenate((r̂z,θ̂z,φ̂z), axis=sphaxis),axis=cartaxis)
|
|
|
|
|
out = np.concatenate((x,y,z),axis=cartaxis)
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
def lpy(nmax, z):
|
|
|
|
|
"""
|
|
|
|
|
Associated legendre function and its derivatative at z in the 'y-indexing'.
|
|
|
|
|
(Without Condon-Shortley phase AFAIK.)
|
|
|
|
|
NOT THOROUGHLY TESTED
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
|
|
|
|
|
nmax: int
|
|
|
|
|
The maximum order to which the Legendre functions will be evaluated..
|
|
|
|
|
|
|
|
|
|
z: float
|
|
|
|
|
The point at which the Legendre functions are evaluated.
|
|
|
|
|
|
|
|
|
|
output: (P_y, dP_y) TODO
|
|
|
|
|
y-indexed legendre polynomials and their derivatives
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
pmn_plus, dpmn_plus = lpmn(nmax, nmax, z)
|
|
|
|
|
pmn_minus, dpmn_minus = lpmn(-nmax, nmax, z)
|
|
|
|
|
nelem = nmax * nmax + 2*nmax
|
|
|
|
|
P_y = np.empty((nelem), dtype=np.float_)
|
|
|
|
|
dP_y = np.empty((nelem), dtype=np.float_)
|
|
|
|
|
mn_p_y, mn_n_y = get_y_mn_unsigned(nmax)
|
|
|
|
|
mn_plus_mask = (mn_p_y >= 0)
|
|
|
|
|
mn_minus_mask = (mn_n_y >= 0)
|
|
|
|
|
#print( mn_n_y[mn_minus_mask])
|
|
|
|
|
P_y[mn_p_y[mn_plus_mask]] = pmn_plus[mn_plus_mask]
|
|
|
|
|
P_y[mn_n_y[mn_minus_mask]] = pmn_minus[mn_minus_mask]
|
|
|
|
|
dP_y[mn_p_y[mn_plus_mask]] = dpmn_plus[mn_plus_mask]
|
|
|
|
|
dP_y[mn_n_y[mn_minus_mask]] = dpmn_minus[mn_minus_mask]
|
|
|
|
|
return (P_y, dP_y)
|
|
|
|
|
|
|
|
|
|
def vswf_yr(pos_sph,nmax,J=1):
|
|
|
|
|
"""
|
|
|
|
|
Normalized vector spherical wavefunctions $\widetilde{M}_{mn}^{j}$,
|
|
|
|
|
$\widetilde{N}_{mn}^{j}$ as in [1, (2.40)].
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
|
|
|
|
|
pos_sph : np.array(dtype=float, shape=(someshape,3))
|
|
|
|
|
The positions where the spherical vector waves are to be
|
|
|
|
|
evaluated. The last axis corresponds to the individual
|
|
|
|
|
points (r,θ,φ). The radial coordinate r is dimensionless,
|
|
|
|
|
assuming that it has already been multiplied by the
|
|
|
|
|
wavenumber.
|
|
|
|
|
|
|
|
|
|
nmax : int
|
|
|
|
|
The maximum order to which the VSWFs are evaluated.
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
-------
|
|
|
|
|
|
|
|
|
|
output : np.array(dtype=complex, shape=(someshape,nmax*nmax + 2*nmax,3))
|
|
|
|
|
Spherical vector wave functions evaluated at pos_sph,
|
|
|
|
|
in the local basis (r̂,θ̂,φ̂). The last indices correspond
|
|
|
|
|
to m, n (in the ordering given by mnindex()), and basis
|
|
|
|
|
vector index, respectively.
|
|
|
|
|
|
|
|
|
|
[1] Jonathan M. Taylor. Optical Binding Phenomena: Observations and
|
|
|
|
|
Mechanisms.
|
|
|
|
|
"""
|
|
|
|
|
#mi, ni = mnindex(nmax)
|
|
|
|
|
#nelems = nmax*nmax + 2*nmax
|
|
|
|
|
## TODO Remove these two lines in production:
|
|
|
|
|
#if(len(mi) != nelems):
|
|
|
|
|
# raise ValueError("This is very wrong.")
|
|
|
|
|
## Pre-calculate the associated Legendre function
|
|
|
|
|
#Prmn, dPrmn = lpmn(nmax,nmax,)
|
|
|
|
|
## Normalized funs π̃, τ̃
|
|
|
|
|
#π̃ =
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
from scipy.special import sph_jn, sph_yn
|
|
|
|
|
def _sph_zn_1(n,z):
|
|
|
|
|
return sph_jn(n,z)
|
|
|
|
|
def _sph_zn_2(n,z):
|
|
|
|
|
return sph_yn(n,z)
|
|
|
|
|
def _sph_zn_3(n,z):
|
|
|
|
|
besj=sph_jn(n,z)
|
|
|
|
|
besy=sph_yn(n,z)
|
|
|
|
|
return (besj[0] + 1j*besy[0],besj[1] + 1j*besy[1])
|
|
|
|
|
def _sph_zn_4(n,z):
|
|
|
|
|
besj=sph_jn(n,z)
|
|
|
|
|
besy=sph_yn(n,z)
|
|
|
|
|
return (besj[0] - 1j*besy[0],besj[1] - 1j*besy[1])
|
|
|
|
|
_sph_zn = [_sph_zn_1,_sph_zn_2,_sph_zn_3,_sph_zn_4]
|
|
|
|
|
|
|
|
|
|
# computes bessel/hankel functions for orders from 0 up to n; drops
|
|
|
|
|
# the derivatives which are also included in scipy.special.sph_jn/yn
|
|
|
|
|
def zJn(n, z, J=1):
|
|
|
|
|
return _sph_zn[J-1](n=n,z=z)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# The following 4 funs have to be refactored, possibly merged
|
|
|
|
|
def π̃_zerolim(nmax): # seems OK
|
|
|
|
|
"""
|
|
|
|
|
lim_{θ→ 0-} π̃(cos θ)
|
|
|
|
|
"""
|
|
|
|
|
my, ny = get_mn_y(nmax)
|
|
|
|
|
nelems = len(my)
|
|
|
|
|
π̃_y = np.zeros((nelems))
|
|
|
|
|
plus1mmask = (my == 1)
|
|
|
|
|
minus1mmask = (my == -1)
|
|
|
|
|
pluslim = -ny*(1+ny)/2
|
|
|
|
|
minuslim = 0.5
|
|
|
|
|
π̃_y[plus1mmask] = pluslim[plus1mmask]
|
|
|
|
|
π̃_y[minus1mmask] = - minuslim
|
|
|
|
|
prenorm = np.sqrt((2*ny + 1)*factorial(ny-my)/(4*π*factorial(ny+my)))
|
|
|
|
|
π̃_y = prenorm * π̃_y
|
|
|
|
|
return π̃_y
|
|
|
|
|
|
|
|
|
|
def π̃_pilim(nmax): # Taky OK, jen to možná není kompatibilní se vzorečky z mathematiky
|
|
|
|
|
"""
|
|
|
|
|
lim_{θ→ π+} π̃(cos θ)
|
|
|
|
|
"""
|
|
|
|
|
my, ny = get_mn_y(nmax)
|
|
|
|
|
nelems = len(my)
|
|
|
|
|
π̃_y = np.zeros((nelems))
|
|
|
|
|
plus1mmask = (my == 1)
|
|
|
|
|
minus1mmask = (my == -1)
|
|
|
|
|
pluslim = (-1)**ny*ny*(1+ny)/2
|
|
|
|
|
minuslim = 0.5*(-1)**ny
|
|
|
|
|
π̃_y[plus1mmask] = pluslim[plus1mmask]
|
|
|
|
|
π̃_y[minus1mmask] = minuslim[minus1mmask]
|
|
|
|
|
prenorm = np.sqrt((2*ny + 1)*factorial(ny-my)/(4*π*factorial(ny+my)))
|
|
|
|
|
π̃_y = prenorm * π̃_y
|
|
|
|
|
return π̃_y
|
|
|
|
|
|
|
|
|
|
def τ̃_zerolim(nmax):
|
|
|
|
|
"""
|
|
|
|
|
lim_{θ→ 0-} τ̃(cos θ)
|
|
|
|
|
"""
|
|
|
|
|
p0 = π̃_zerolim(nmax)
|
|
|
|
|
my, ny = get_mn_y(nmax)
|
|
|
|
|
minus1mmask = (my == -1)
|
|
|
|
|
p0[minus1mmask] = -p0[minus1mmask]
|
|
|
|
|
return p0
|
|
|
|
|
|
|
|
|
|
def τ̃_pilim(nmax):
|
|
|
|
|
"""
|
|
|
|
|
lim_{θ→ π+} τ̃(cos θ)
|
|
|
|
|
"""
|
|
|
|
|
t = π̃_pilim(nmax)
|
|
|
|
|
my, ny = get_mn_y(nmax)
|
|
|
|
|
plus1mmask = (my == 1)
|
|
|
|
|
t[plus1mmask] = -t[plus1mmask]
|
|
|
|
|
return t
|
|
|
|
|
|
|
|
|
|
def get_π̃τ̃_y1(θ,nmax):
|
|
|
|
|
# TODO replace with the limit functions (below) when θ approaches
|
|
|
|
|
# the extreme values at about 1e-6 distance
|
|
|
|
|
"""
|
|
|
|
|
(... TODO)
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
if (abs(θ)<1e-6):
|
|
|
|
|
return (π̃_zerolim(nmax),τ̃_zerolim(nmax))
|
|
|
|
|
if (abs(θ-π)<1e-6):
|
|
|
|
|
return (π̃_pilim(nmax),τ̃_pilim(nmax))
|
|
|
|
|
my, ny = get_mn_y(nmax)
|
|
|
|
|
nelems = len(my)
|
|
|
|
|
Py, dPy = lpy(nmax, math.cos(θ))
|
|
|
|
|
prenorm = np.sqrt((2*ny + 1)*factorial(ny-my)/(4*π*factorial(ny+my)))
|
|
|
|
|
π̃_y = prenorm * my * Py / math.sin(θ) # bacha, možné dělení nulou
|
|
|
|
|
τ̃_y = prenorm * dPy * (- math.sin(θ)) # TADY BACHA!!!!!!!!!! * (- math.sin(pos_sph[1])) ???
|
|
|
|
|
return (π̃_y,τ̃_y)
|
|
|
|
|
|
|
|
|
|
def vswf_yr1(pos_sph,nmax,J=1):
|
|
|
|
|
"""
|
|
|
|
|
As vswf_yr, but evaluated only at single position (i.e. pos_sph has
|
|
|
|
|
to have shape=(3))
|
|
|
|
|
"""
|
|
|
|
|
if (pos_sph[1].imag or pos_sph[2].imag):
|
|
|
|
|
raise ValueError("The angles for the spherical wave functions can not be complex")
|
|
|
|
|
kr = pos_sph[0] if pos_sph[0].imag else pos_sph[0].real # To supress the idiotic warning in scipy.special.sph_jn
|
|
|
|
|
θ = pos_sph[1].real
|
|
|
|
|
φ = pos_sph[2].real
|
|
|
|
|
my, ny = get_mn_y(nmax)
|
|
|
|
|
Py, dPy = lpy(nmax, math.cos(θ))
|
|
|
|
|
nelems = nmax*nmax + 2*nmax
|
|
|
|
|
# TODO Remove these two lines in production:
|
|
|
|
|
if(len(Py) != nelems or len(my) != nelems):
|
|
|
|
|
raise ValueError("This is very wrong.")
|
|
|
|
|
prenorm = np.sqrt((2*ny + 1)*factorial(ny-my)/(4*π*factorial(ny+my)))
|
|
|
|
|
if (abs(θ)<1e-6): # Ošetření limitního chování derivací Leg. fcí
|
|
|
|
|
π̃_y=π̃_zerolim(nmax)
|
|
|
|
|
τ̃_y=τ̃_zerolim(nmax)
|
|
|
|
|
elif (abs(θ-π)<1e-6):
|
|
|
|
|
π̃_y=π̃_pilim(nmax)
|
|
|
|
|
τ̃_y=τ̃_pilim(nmax)
|
|
|
|
|
else:
|
|
|
|
|
π̃_y = prenorm * my * Py / math.sin(θ)
|
|
|
|
|
τ̃_y = prenorm * dPy * (- math.sin(θ)) # TADY BACHA!!!!!!!!!! * (- math.sin(pos_sph[1])) ???
|
|
|
|
|
z_n, dz_n = zJn(nmax, kr, J=J)
|
|
|
|
|
z_y = z_n[ny]
|
|
|
|
|
dz_y = dz_n[ny]
|
|
|
|
|
eimf_y = np.exp(1j*my*φ) # zbytečné opakování my, lepší by bylo to spočítat jednou a vyindexovat
|
|
|
|
|
M̃_y = np.zeros((nelems,3), dtype=np.complex_)
|
|
|
|
|
M̃_y[:,1] = 1j * π̃_y * eimf_y * z_y
|
|
|
|
|
M̃_y[:,2] = - τ̃_y * eimf_y * z_y
|
|
|
|
|
Ñ_y = np.empty((nelems,3), dtype=np.complex_)
|
|
|
|
|
Ñ_y[:,0] = (ny*(ny+1)/kr) * prenorm * Py * eimf_y * z_y
|
|
|
|
|
Ñradial_fac_y = z_y / kr + dz_y
|
|
|
|
|
Ñ_y[:,1] = τ̃_y * eimf_y * Ñradial_fac_y
|
|
|
|
|
Ñ_y[:,2] = 1j*π̃_y * eimf_y * Ñradial_fac_y
|
|
|
|
|
return(M̃_y, Ñ_y)
|
|
|
|
|
|
|
|
|
|
#def plane_E_y(nmax):
|
|
|
|
|
# """
|
|
|
|
|
# The E_mn normalization factor as in [1, (3)] WITHOUT the E_0 factor,
|
|
|
|
|
# y-indexed
|
|
|
|
|
#
|
|
|
|
|
# (... TODO)
|
|
|
|
|
#
|
|
|
|
|
# References
|
|
|
|
|
# ----------
|
|
|
|
|
# [1] Jonathan M. Taylor. Optical Binding Phenomena: Observations and
|
|
|
|
|
# Mechanisms. FUCK, I MADE A MISTAKE: THIS IS FROM 7U
|
|
|
|
|
# """
|
|
|
|
|
# my, ny = get_mn_y(nmax)
|
|
|
|
|
# return 1j**ny * np.sqrt((2*ny+1)*factorial(ny-my) /
|
|
|
|
|
# (ny*(ny+1)*factorial(ny+my))
|
|
|
|
|
# )
|
|
|
|
|
|
|
|
|
|
def zplane_pq_y(nmax, betap = 0):
|
|
|
|
|
"""
|
|
|
|
|
The z-propagating plane wave expansion coefficients as in [1, (1.12)]
|
|
|
|
|
|
|
|
|
|
(... TODO)
|
|
|
|
|
"""
|
|
|
|
|
my, ny = get_mn_y(nmax)
|
|
|
|
|
U_y = 4*π * 1j**ny / (ny * (ny+1))
|
|
|
|
|
π̃_y = π̃_zerolim(nmax)
|
|
|
|
|
τ̃_y = τ̃_zerolim(nmax)
|
|
|
|
|
|
|
|
|
|
# fixme co je zač ten e_θ ve vzorečku? (zde neimplementováno)
|
|
|
|
|
p_y = U_y*(τ̃_y*math.cos(betap) - 1j*math.sin(betap)*π̃_y)
|
|
|
|
|
q_y = U_y*(π̃_y*math.cos(betap) - 1j*math.sin(betap)*τ̃_y)
|
|
|
|
|
return (p_y, q_y)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#import warnings
|
|
|
|
|
def plane_pq_y(nmax, kdir_cart, E_cart):
|
|
|
|
|
"""
|
|
|
|
|
The plane wave expansion coefficients for any direction kdir_cart
|
|
|
|
|
and amplitude vector E_cart (which might be complex, depending on
|
|
|
|
|
the phase and polarisation state). If E_cart and kdir_cart are
|
|
|
|
|
not orthogonal, the result should correspond to the k-normal part
|
|
|
|
|
of E_cart.
|
|
|
|
|
"""
|
|
|
|
|
if np.iscomplexobj(kdir_cart):
|
|
|
|
|
warnings.warn("The direction vector for the plane wave coefficients should be real. I am discarding the imaginary part now.")
|
|
|
|
|
kdir_cart = kdir_cart.real
|
|
|
|
|
|
|
|
|
|
k_sph = cart2sph(kdir_cart)
|
|
|
|
|
π̃_y, τ̃_y = get_π̃τ̃_y1(k_sph[1], nmax)
|
|
|
|
|
my, ny = get_mn_y(nmax)
|
|
|
|
|
U_y = 4*π * 1j**ny / (ny * (ny+1))
|
|
|
|
|
θ̂ = sph_loccart2cart(np.array([0,1,0]), k_sph, axis=-1)
|
|
|
|
|
φ̂ = sph_loccart2cart(np.array([0,0,1]), k_sph, axis=-1)
|
|
|
|
|
p_y = np.sum( U_y[:,ň]
|
|
|
|
|
* np.conj(np.exp(1j*my[:,ň]*k_sph[2]) * (
|
|
|
|
|
θ̂[ň,:]*τ̃_y[:,ň] + 1j*φ̂[ň,:]*π̃_y[:,ň]))
|
|
|
|
|
* E_cart[ň,:],
|
|
|
|
|
axis=-1)
|
|
|
|
|
q_y = np.sum( U_y[:,ň]
|
|
|
|
|
* np.conj(np.exp(1j*my[:,ň]*k_sph[2]) * (
|
|
|
|
|
θ̂[ň,:]*π̃_y[:,ň] + 1j*φ̂[ň,:]*τ̃_y[:,ň]))
|
|
|
|
|
* E_cart[ň,:],
|
|
|
|
|
axis=-1)
|
|
|
|
|
return (p_y, q_y)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Functions copied from scattering_xu, additionaly normalized
|
|
|
|
|
from py_gmm.gmm import vec_trans as vc
|
|
|
|
|
|
|
|
|
|
def q_max(m,n,μ,ν):
|
|
|
|
|
return min(n,ν,(n+ν-abs(m+μ))/2)
|
|
|
|
|
|
|
|
|
|
# returns array with indices corresponding to q
|
|
|
|
|
# argument q does nothing for now
|
|
|
|
|
def a_q(m,n,μ,ν,q = None):
|
|
|
|
|
qm=q_max(m,n,μ,ν)
|
|
|
|
|
res, err= vc.gaunt_xu(m,n,μ,ν,qm)
|
|
|
|
|
if(err):
|
|
|
|
|
print("m,n,μ,ν,qm = ",m,n,μ,ν,qm)
|
|
|
|
|
raise ValueError('Something bad in the fortran subroutine gaunt_xu happened')
|
|
|
|
|
return res
|
|
|
|
|
|
|
|
|
|
# All arguments are single numbers (for now)
|
|
|
|
|
# ZDE VYCHÁZEJÍ DIVNÁ ZNAMÉNKA
|
|
|
|
|
def Ã(m,n,μ,ν,kdlj,θlj,φlj,r_ge_d,J):
|
|
|
|
|
exponent=(math.lgamma(2*n+1)-math.lgamma(n+2)+math.lgamma(2*ν+3)-math.lgamma(ν+2)
|
|
|
|
|
+math.lgamma(n+ν+m-μ+1)-math.lgamma(n-m+1)-math.lgamma(ν+μ+1)
|
|
|
|
|
+math.lgamma(n+ν+1) - math.lgamma(2*(n+ν)+1))
|
|
|
|
|
presum = math.exp(exponent)
|
|
|
|
|
presum = presum * np.exp(1j*(μ-m)*φlj) * (-1)**m * 1j**(ν+n) / (4*n)
|
|
|
|
|
qmax = floor(q_max(-m,n,μ,ν)) #nemá tu být +m?
|
|
|
|
|
q = np.arange(qmax+1, dtype=int)
|
|
|
|
|
# N.B. -m !!!!!!
|
|
|
|
|
a1q = a_q(-m,n,μ,ν) # there is redundant calc. of qmax
|
|
|
|
|
ã1q = a1q / a1q[0]
|
|
|
|
|
p = n+ν-2*q
|
|
|
|
|
if(r_ge_d):
|
|
|
|
|
J = 1
|
|
|
|
|
zp = zJn(n+ν,kdlj,J)[0][p]
|
|
|
|
|
Pp = lpmv(μ-m,p,math.cos(θlj))
|
|
|
|
|
summandq = (n*(n+1) + ν*(ν+1) - p*(p+1)) * (-1)**q * ã1q * zp * Pp
|
|
|
|
|
|
|
|
|
|
# Taylor normalisation v2, proven to be equivalent (NS which is better)
|
|
|
|
|
prenormratio = 1j**(ν-n) * math.sqrt(((2*ν+1)/(2*n+1))* math.exp(
|
|
|
|
|
math.lgamma(n+m+1)-math.lgamma(n-m+1)+math.lgamma(ν-μ+1)-math.lgamma(ν+μ+1)))
|
|
|
|
|
presum = presum / prenormratio
|
|
|
|
|
|
|
|
|
|
# Taylor normalisation
|
|
|
|
|
#prenormmn = math.sqrt((2*n + 1)*math.factorial(n-m)/(4*π*factorial(n+m)))
|
|
|
|
|
#prenormμν = math.sqrt((2*ν + 1)*math.factorial(ν-μ)/(4*π*factorial(ν+μ)))
|
|
|
|
|
#presum = presum * prenormμν / prenormmn
|
|
|
|
|
|
|
|
|
|
return presum * np.sum(summandq)
|
|
|
|
|
|
|
|
|
|
# ZDE OPĚT JINAK ZNAMÉNKA než v Xu (J. comp. phys 127, 285)
|
|
|
|
|
def B̃(m,n,μ,ν,kdlj,θlj,φlj,r_ge_d,J):
|
|
|
|
|
exponent=(math.lgamma(2*n+3)-math.lgamma(n+2)+math.lgamma(2*ν+3)-math.lgamma(ν+2)
|
|
|
|
|
+math.lgamma(n+ν+m-μ+2)-math.lgamma(n-m+1)-math.lgamma(ν+μ+1)
|
|
|
|
|
+math.lgamma(n+ν+2) - math.lgamma(2*(n+ν)+3))
|
|
|
|
|
presum = math.exp(exponent)
|
|
|
|
|
presum = presum * np.exp(1j*(μ-m)*φlj) * (-1)**m * 1j**(ν+n+1) / (
|
|
|
|
|
(4*n)*(n+1)*(n+m+1))
|
|
|
|
|
Qmax = floor(q_max(-m,n+1,μ,ν))
|
|
|
|
|
q = np.arange(Qmax+1, dtype=int)
|
|
|
|
|
if (μ == ν): # it would disappear in the sum because of the factor (ν-μ) anyway
|
|
|
|
|
ã2q = 0
|
|
|
|
|
else:
|
|
|
|
|
a2q = a_q(-m-1,n+1,μ+1,ν)
|
|
|
|
|
ã2q = a2q / a2q[0]
|
|
|
|
|
a3q = a_q(-m,n+1,μ,ν)
|
|
|
|
|
ã3q = a3q / a3q[0]
|
|
|
|
|
#print(len(a2q),len(a3q))
|
|
|
|
|
p = n+ν-2*q
|
|
|
|
|
if(r_ge_d):
|
|
|
|
|
J = 1
|
|
|
|
|
zp_ = zJn(n+1+ν,kdlj,J)[0][p+1] # je ta +1 správně?
|
|
|
|
|
Pp_ = lpmv(μ-m,p+1,math.cos(θlj))
|
|
|
|
|
summandq = ((2*(n+1)*(ν-μ)*ã2q
|
|
|
|
|
-(-ν*(ν+1) - n*(n+3) - 2*μ*(n+1)+p*(p+3))* ã3q)
|
|
|
|
|
*(-1)**q * zp_ * Pp_)
|
|
|
|
|
|
|
|
|
|
# Taylor normalisation v2, proven to be equivalent
|
|
|
|
|
prenormratio = 1j**(ν-n) * math.sqrt(((2*ν+1)/(2*n+1))* math.exp(
|
|
|
|
|
math.lgamma(n+m+1)-math.lgamma(n-m+1)+math.lgamma(ν-μ+1)-math.lgamma(ν+μ+1)))
|
|
|
|
|
presum = presum / prenormratio
|
|
|
|
|
|
|
|
|
|
## Taylor normalisation
|
|
|
|
|
#prenormmn = math.sqrt((2*n + 1)*math.factorial(n-m)/(4*π*factorial(n+m)))
|
|
|
|
|
#prenormμν = math.sqrt((2*ν + 1)*math.factorial(ν-μ)/(4*π*factorial(ν+μ)))
|
|
|
|
|
#presum = presum * prenormμν / prenormmn
|
|
|
|
|
|
|
|
|
|
return presum * np.sum(summandq)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# In[7]:
|
|
|
|
|
|
|
|
|
|
# Material parameters
|
|
|
|
|
def ε_drude(ε_inf, ω_p, γ_p, ω): # RELATIVE permittivity, of course
|
|
|
|
|
return ε_inf - ω_p*ω_p/(ω*(ω+1j*γ_p))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# In[8]:
|
|
|
|
|
|
|
|
|
|
# Mie scattering
|
|
|
|
|
def mie_coefficients(a, nmax, #ω, ε_i, ε_e=1, J_ext=1, J_scat=3
|
|
|
|
|
k_i, k_e, μ_i=1, μ_e=1, J_ext=1, J_scat=3):
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
FIXME test the magnetic case
|
|
|
|
|
TODO description
|
|
|
|
|
#
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
a : float
|
|
|
|
|
Diameter of the sphere.
|
|
|
|
|
|
|
|
|
|
nmax : int
|
|
|
|
|
To which order (inc. nmax) to compute the coefficients.
|
|
|
|
|
|
|
|
|
|
ω : float
|
|
|
|
|
Frequency of the radiation
|
|
|
|
|
|
|
|
|
|
ε_i, ε_e, μ_i, μ_e : complex
|
|
|
|
|
Relative permittivities and permeabilities of the sphere (_i)
|
|
|
|
|
and the environment (_e)
|
|
|
|
|
MAGNETIC (μ_i, μ_e != 1) CASE UNTESTED AND PROBABLY BUGGY
|
|
|
|
|
|
|
|
|
|
J_ext, J_scat : 1, 2, 3, or 4 (must be different)
|
|
|
|
|
Specifies the species of the Bessel/Hankel functions in which
|
|
|
|
|
the external incoming (J_ext) and scattered (J_scat) fields
|
|
|
|
|
are represented. 1,2,3,4 correspond to j,y,h(1),h(2), respectively.
|
|
|
|
|
The returned coefficients are always with respect to the decomposition
|
|
|
|
|
of the "external incoming" wave.
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
-------
|
|
|
|
|
RV == a/p, RH == b/q, TV = d/p, TH = c/q
|
|
|
|
|
TODO
|
|
|
|
|
what does it return on index 0???
|
|
|
|
|
FIXME permeabilities
|
|
|
|
|
"""
|
|
|
|
|
# permittivities are relative!
|
|
|
|
|
# cf. worknotes
|
|
|
|
|
#print("a, nmax, ε_m, ε_b, ω",a, nmax, ε_m, ε_b, ω)
|
|
|
|
|
#k_i = cmath.sqrt(ε_i*μ_i) * ω / c
|
|
|
|
|
x_i = k_i * a
|
|
|
|
|
#k_e = cmath.sqrt(ε_e*μ_e) * ω / c
|
|
|
|
|
x_e = k_e * a
|
|
|
|
|
#print("Mie: phase at radius: x_i",x_i,"x_e",x_e)
|
|
|
|
|
m = k_i/k_e#cmath.sqrt(ε_i*μ_i/(ε_e*μ_e))
|
|
|
|
|
# We "need" the absolute permeabilities for the final formula
|
|
|
|
|
# This is not the absolute wave impedance, because only their ratio
|
|
|
|
|
# ηi/ηe is important for getting the Mie coefficients.
|
|
|
|
|
η_inv_i = k_i / μ_i
|
|
|
|
|
η_inv_e = k_e / μ_e
|
|
|
|
|
#print("k_m, x_m,k_b,x_b",k_m, x_m,k_b,x_b)
|
|
|
|
|
zi, ži = zJn(nmax, x_i, J=1)
|
|
|
|
|
#Pi = (zi * x_i)
|
|
|
|
|
#Di = (zi + x_i * ži) / Pi # Vzoreček Taylor (2.9)
|
|
|
|
|
#ži = zi + x_i * ži
|
|
|
|
|
ze, že = zJn(nmax, x_e, J=J_ext)
|
|
|
|
|
#Pe = (ze * x_e)
|
|
|
|
|
#De = (ze + x_e * že) / Pe # Vzoreček Taylor (2.9)
|
|
|
|
|
#že = ze + x_e * že
|
|
|
|
|
zs, žs = zJn(nmax, x_e, J=J_scat)
|
|
|
|
|
#Ps = (zs * x_e)
|
|
|
|
|
#Ds = (zs + x_e * žs) / Ps # Vzoreček Taylor (2.9)
|
|
|
|
|
#žs = zs + x_e * zs
|
|
|
|
|
#RH = (μ_i*zi*že - μ_e*ze*ži) / (μ_i*zi*žs - μ_e*zs*ži)
|
|
|
|
|
#RV = (μ_e*m*m*zi*že - μ_i*ze*ži) / (μ_e*m*m*zi*žs - μ_i*zs*ži)
|
|
|
|
|
#TH = (μ_i*ze*žs - μ_i*zs*že) / (μ_i*zi*žs - μ_e*zs*ži)
|
|
|
|
|
#TV = (μ_i*m*ze*žs - μ_i*m*zs*že) / (μ_e*m*m*zi*žs - μ_i*zs*ži)
|
|
|
|
|
ži = zi/x_i+ži
|
|
|
|
|
žs = zs/x_e+žs
|
|
|
|
|
že = ze/x_e+že
|
|
|
|
|
RV = -((-η_inv_i * že * zi + η_inv_e * ze * ži)/(-η_inv_e * ži * zs + η_inv_i * zi * žs))
|
|
|
|
|
RH = -((-η_inv_e * že * zi + η_inv_i * ze * ži)/(-η_inv_i * ži * zs + η_inv_e * zi * žs))
|
|
|
|
|
TV = -((-η_inv_e * že * zs + η_inv_e * ze * žs)/( η_inv_e * ži * zs - η_inv_i * zi * žs))
|
|
|
|
|
TH = -(( η_inv_e * že * zs - η_inv_e * ze * žs)/(-η_inv_i * ži * zs + η_inv_e * zi * žs))
|
|
|
|
|
return (RH, RV, TH, TV)
|
|
|
|
|
|
|
|
|
|
def G_Mie_scat_precalc_cart_new(source_cart, dest_cart, RH, RV, a, nmax, k_i, k_e, μ_i=1, μ_e=1, J_ext=1, J_scat=3):
|
|
|
|
|
"""
|
|
|
|
|
Implementation according to Kristensson, page 50
|
|
|
|
|
My (Taylor's) basis functions are normalized to n*(n+1), whereas Kristensson's to 1
|
|
|
|
|
TODO: check possible -1 factors (cf. Kristensson's dagger notation)
|
|
|
|
|
"""
|
|
|
|
|
my, ny = get_mn_y(nmax)
|
|
|
|
|
nelem = len(my)
|
|
|
|
|
#source to origin
|
|
|
|
|
source_sph = cart2sph(source_cart)
|
|
|
|
|
source_sph[0] = k_e * source_sph[0]
|
|
|
|
|
dest_sph = cart2sph(dest_cart)
|
|
|
|
|
dest_sph[0] = k_e * dest_sph[0]
|
|
|
|
|
if(dest_sph[0].real >= source_sph[0].real):
|
|
|
|
|
lo_sph = source_sph
|
|
|
|
|
hi_sph = dest_sph
|
|
|
|
|
else:
|
|
|
|
|
lo_sph = dest_sph
|
|
|
|
|
hi_sph = source_sph
|
|
|
|
|
lo_sph = source_sph
|
|
|
|
|
hi_sph = dest_sph
|
|
|
|
|
|
|
|
|
|
M̃lo_y, Ñlo_y = vswf_yr1(lo_sph,nmax,J=J_scat)
|
|
|
|
|
lo_loccart_basis = sph_loccart_basis(lo_sph, sphaxis=-1, cartaxis=None)
|
|
|
|
|
M̃lo_cart_y = np.sum(M̃lo_y[:,:,ň]*lo_loccart_basis[ň,:,:],axis=-2)
|
|
|
|
|
Ñlo_cart_y = np.sum(Ñlo_y[:,:,ň]*lo_loccart_basis[ň,:,:],axis=-2)
|
|
|
|
|
|
|
|
|
|
M̃hi_y, Ñhi_y = vswf_yr1(hi_sph,nmax,J=J_scat)#J_scat
|
|
|
|
|
hi_loccart_basis = sph_loccart_basis(hi_sph, sphaxis=-1, cartaxis=None)
|
|
|
|
|
M̃hi_cart_y = np.sum(M̃hi_y[:,:,ň]*hi_loccart_basis[ň,:,:],axis=-2)
|
|
|
|
|
Ñhi_cart_y = np.sum(Ñhi_y[:,:,ň]*hi_loccart_basis[ň,:,:],axis=-2)
|
|
|
|
|
|
|
|
|
|
G_y = (RH[ny][:,ň,ň] * M̃lo_cart_y[:,:,ň].conj() * M̃hi_cart_y[:,ň,:] +
|
|
|
|
|
RV[ny][:,ň,ň] * Ñlo_cart_y[:,:,ň].conj() * Ñhi_cart_y[:,ň,:]) / (ny * (ny+1))[:,ň,ň]
|
|
|
|
|
return 1j* k_e*np.sum(G_y,axis=0)
|
|
|
|
|
|
|
|
|
|
def G_Mie_scat_precalc_cart(source_cart, dest_cart, RH, RV, a, nmax, k_i, k_e, μ_i=1, μ_e=1, J_ext=1, J_scat=3):
|
|
|
|
|
"""
|
|
|
|
|
r1_cart (destination), r2_cart (source) and the result are in cartesian coordinates
|
|
|
|
|
the result indices are in the source-destination order
|
|
|
|
|
TODO
|
|
|
|
|
"""
|
|
|
|
|
my, ny = get_mn_y(nmax)
|
|
|
|
|
nelem = len(my)
|
|
|
|
|
#source to origin
|
|
|
|
|
so_sph = cart2sph(-source_cart)
|
|
|
|
|
kd_so = k_e * so_sph[0]
|
|
|
|
|
θ_so = so_sph[1]
|
|
|
|
|
φ_so = so_sph[2]
|
|
|
|
|
# Decomposition of the source N_0,1, N_-1,1, and N_1,1 in the nanoparticle center
|
|
|
|
|
p_0 = np.empty((nelem), dtype=np.complex_)
|
|
|
|
|
q_0 = np.empty((nelem), dtype=np.complex_)
|
|
|
|
|
p_minus = np.empty((nelem), dtype=np.complex_)
|
|
|
|
|
q_minus = np.empty((nelem), dtype=np.complex_)
|
|
|
|
|
p_plus = np.empty((nelem), dtype=np.complex_)
|
|
|
|
|
q_plus = np.empty((nelem), dtype=np.complex_)
|
|
|
|
|
for y in range(nelem):
|
|
|
|
|
m = my[y]
|
|
|
|
|
n = ny[y]
|
|
|
|
|
p_0[y] = Ã(m,n, 0,1,kd_so,θ_so,φ_so,False,J=J_scat)
|
|
|
|
|
q_0[y] = B̃(m,n, 0,1,kd_so,θ_so,φ_so,False,J=J_scat)
|
|
|
|
|
p_minus[y] = Ã(m,n,-1,1,kd_so,θ_so,φ_so,False,J=J_scat)
|
|
|
|
|
q_minus[y] = B̃(m,n,-1,1,kd_so,θ_so,φ_so,False,J=J_scat)
|
|
|
|
|
p_plus[y] = Ã(m,n, 1,1,kd_so,θ_so,φ_so,False,J=J_scat)
|
|
|
|
|
q_plus[y] = B̃(m,n, 1,1,kd_so,θ_so,φ_so,False,J=J_scat)
|
|
|
|
|
a_0 = RV[ny] * p_0
|
|
|
|
|
b_0 = RH[ny] * q_0
|
|
|
|
|
a_plus = RV[ny] * p_plus
|
|
|
|
|
b_plus = RH[ny] * q_plus
|
|
|
|
|
a_minus = RV[ny] * p_minus
|
|
|
|
|
b_minus = RH[ny] * q_minus
|
|
|
|
|
orig2dest_sph = cart2sph(dest_cart)
|
|
|
|
|
orig2dest_sph[0] = k_e*orig2dest_sph[0]
|
|
|
|
|
M_dest_y, N_dest_y = vswf_yr1(orig2dest_sph,nmax,J=J_scat)
|
|
|
|
|
# N.B. these are in the local cartesian coordinates (r̂,θ̂,φ̂)
|
|
|
|
|
N_dest_0 = np.sum(a_0[:,ň] * N_dest_y, axis=-2)
|
|
|
|
|
M_dest_0 = np.sum(b_0[:,ň] * M_dest_y, axis=-2)
|
|
|
|
|
N_dest_plus = np.sum(a_plus[:,ň] * N_dest_y, axis=-2)
|
|
|
|
|
M_dest_plus = np.sum(b_plus[:,ň] * M_dest_y, axis=-2)
|
|
|
|
|
N_dest_minus = np.sum(a_minus[:,ň]* N_dest_y, axis=-2)
|
|
|
|
|
M_dest_minus = np.sum(b_minus[:,ň]* M_dest_y, axis=-2)
|
|
|
|
|
prefac = math.sqrt(1/(4*3*π))#/ε_0
|
|
|
|
|
G_sourcez_dest = prefac * (N_dest_0+M_dest_0)
|
|
|
|
|
G_sourcex_dest = prefac * (N_dest_minus+M_dest_minus-N_dest_plus-M_dest_plus)/math.sqrt(2)
|
|
|
|
|
G_sourcey_dest = prefac * (N_dest_minus+M_dest_minus+N_dest_plus+M_dest_plus)/(1j*math.sqrt(2))
|
|
|
|
|
G_source_dest = np.array([G_sourcex_dest, G_sourcey_dest, G_sourcez_dest])
|
|
|
|
|
# To global cartesian coordinates:
|
|
|
|
|
G_source_dest = sph_loccart2cart(G_source_dest, sph=orig2dest_sph, axis=-1)
|
|
|
|
|
return G_source_dest
|
|
|
|
|
|
|
|
|
|
def G_Mie_scat_cart(source_cart, dest_cart, a, nmax, k_i, k_e, μ_i=1, μ_e=1, J_ext=1, J_scat=3):
|
|
|
|
|
"""
|
|
|
|
|
TODO
|
|
|
|
|
"""
|
|
|
|
|
RH, RV, TH, TV = mie_coefficients(a=a, nmax=nmax, k_i=k_i, k_e=k_e, μ_i=μ_i, μ_e=μ_e, J_ext=J_ext, J_scat=J_scat)
|
|
|
|
|
return G_Mie_scat_precalc_cart_new(source_cart, dest_cart, RH, RV, a, nmax, k_i, k_e, μ_i, μ_e, J_ext, J_scat)
|
|
|
|
|
|
|
|
|
|
|
2016-06-28 16:13:28 +03:00
|
|
|
|
#TODO
|
|
|
|
|
def cross_section_Mie_precalc():
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
def cross_section_Mie(a, nmax, k_i, k_e, μ_i, μ_e,):
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
2016-03-27 12:56:54 +03:00
|
|
|
|
# In[9]:
|
|
|
|
|
|
|
|
|
|
# From PRL 112, 253601 (1)
|
|
|
|
|
def Grr_Delga(nmax, a, r, k, ε_m, ε_b):
|
|
|
|
|
om = k * c
|
|
|
|
|
z = (r-a)/a
|
|
|
|
|
g0 = om*cmath.sqrt(ε_b)/(6*c*π)
|
|
|
|
|
n = np.arange(1,nmax+1)
|
|
|
|
|
s = np.sum( (n+1)**2 * (ε_m-ε_b) / ((1+z)**(2*n+4) * (ε_m + ((n+1)/n)*ε_b)))
|
|
|
|
|
return (g0 + s * c**2/(4*π*om**2*ε_b*a**3))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# TODOs
|
|
|
|
|
# ====
|
|
|
|
|
#
|
|
|
|
|
# Rewrite the functions zJn, lpy in (at least simulated) universal manner.
|
|
|
|
|
# Then universalise the rest
|
|
|
|
|
#
|
|
|
|
|
# Implement the actual multiple scattering
|
|
|
|
|
#
|
|
|
|
|
# Test if the decomposition of plane wave works also for absorbing environment (complex k).
|
|
|
|
|
|
|
|
|
|
# From PRL 112, 253601 (1)
|
|
|
|
|
def Grr_Delga(nmax, a, r, k, ε_m, ε_b):
|
|
|
|
|
om = k * c
|
|
|
|
|
z = (r-a)/a
|
|
|
|
|
g0 = om*cmath.sqrt(ε_b)/(6*c*π)
|
|
|
|
|
n = np.arange(1,nmax+1)
|
|
|
|
|
s = np.sum( (n+1)**2 * (ε_m-ε_b) / ((1+z)**(2*n+4) * (ε_m + ((n+1)/n)*ε_b)))
|
|
|
|
|
return (g0 + s * c**2/(4*π*om**2*ε_b*a**3))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def G0_dip_1(r_cart,k):
|
|
|
|
|
"""
|
|
|
|
|
Free-space dyadic Green's function in terms of the spherical vector waves.
|
|
|
|
|
FIXME
|
|
|
|
|
"""
|
|
|
|
|
sph = cart2sph(r_cart*k)
|
|
|
|
|
pfz = 0.32573500793527994772 # 1./math.sqrt(3.*π)
|
|
|
|
|
pf = 0.23032943298089031951 # 1./math.sqrt(6.*π)
|
|
|
|
|
M1_y, N1_y = vswf_yr1(sph,nmax = 1,J=3)
|
|
|
|
|
loccart_basis = sph_loccart_basis(sph, sphaxis=-1, cartaxis=None)
|
|
|
|
|
N1_cart = np.sum(N1_y[:,:,ň]*loccart_basis[ň,:,:],axis=-2)
|
|
|
|
|
coeffs_cart = np.array([[pf,-1j*pf,0.],[0.,0.,pfz],[-pf,-1j*pf,0.]]).conj()
|
|
|
|
|
return 1j*k*np.sum(coeffs_cart[:,:,ň]*N1_cart[:,ň,:],axis=0)/2.
|
|
|
|
|
|
|
|
|
|
# Free-space dyadic Green's functions from RMP 70, 2, 447 =: [1]
|
|
|
|
|
# (The numerical value is correct only at the regular part, i.e. r != 0)
|
|
|
|
|
def _P(z):
|
|
|
|
|
return (1-1/z+1/(z*z))
|
|
|
|
|
def _Q(z):
|
|
|
|
|
return (-1+3/z-3/(z*z))
|
|
|
|
|
|
|
|
|
|
# [1, (9)] FIXME The sign here is most likely wrong!!!
|
|
|
|
|
def G0_analytical(r #cartesian!
|
|
|
|
|
, k):
|
|
|
|
|
I=np.identity(3)
|
|
|
|
|
rn = sph_loccart2cart(np.array([1.,0.,0.]), cart2sph(r), axis=-1)
|
|
|
|
|
rnxrn = rn[...,:,ň] * rn[...,ň,:]
|
|
|
|
|
r = np.linalg.norm(r, axis=-1)
|
|
|
|
|
#print(_P(1j*k*r).shape,_Q(1j*k*r).shape, rnxrn.shape, I.shape)
|
|
|
|
|
return ((-np.exp(1j*k*r)/(4*π*r))[...,ň,ň] *
|
|
|
|
|
(_P(1j*k*r)[...,ň,ň]*I
|
|
|
|
|
+_Q(1j*k*r)[...,ň,ň]*rnxrn
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
# [1, (11)]
|
|
|
|
|
def G0L_analytical(r, k):
|
|
|
|
|
I=np.identity(3)
|
|
|
|
|
rn = sph_loccart2cart(np.array([1.,0.,0.]), cart2sph(r), axis=-1)
|
|
|
|
|
rnxrn = rn[...,:,ň] * rn[...,ň,:]
|
|
|
|
|
r = np.linalg.norm(r, axis=-1)
|
|
|
|
|
return (I-3*rnxrn)/(4*π*k*k*r**3)[...,ň,ň]
|
|
|
|
|
|
|
|
|
|
# [1,(10)]
|
|
|
|
|
def G0T_analytical(r, k):
|
|
|
|
|
return G0_analytical(r,k) - G0L_analytical(r,k)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def G0_sum_1_slow(source_cart, dest_cart, k, nmax):
|
|
|
|
|
my, ny = get_mn_y(nmax)
|
|
|
|
|
nelem = len(my)
|
|
|
|
|
RH = np.full((nelem),1)
|
|
|
|
|
RV = RH
|
|
|
|
|
return G_Mie_scat_precalc_cart(source_cart, dest_cart, RH, RV, a=0.001, nmax=nmax, k_i=1, k_e=k, μ_i=1, μ_e=1, J_ext=1, J_scat=3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|