qpms/notes/conventions.md

39 lines
3.4 KiB
Markdown
Raw Normal View History

VSWF conventions
================
| Source | VSWF definition | VSWF norm | CS Phase | Field expansion | Radiated power | Notes |
|--- |--- |--- |--- |--- |--- |--- |
| Kristensson I \cite kristensson_spherical_2014 | \f[ \wfkcreg, \wfkcout= \dots \f] | | Yes, in the spherical harmonics definition, cf. sect. D.2. | \f[
\vect E = k \sqrt{\eta_0\eta} \sum_n \left( \wckcreg_n \wfkcreg_n + \wckcout_n \wfkcout_n \right),
\\
\vect H = \frac{k \sqrt{\eta_0\eta}}{i\eta_0\eta} \sum_n \left( \wckcreg_n \wfkcreg_n + \wckcout_n \wfkcout_n \right),
\f] but for plane wave expansion \cite kristensson_spherical_2014 sect. 2.5 K. uses a different definition (same as in Kristensson II). | \f[
P = \frac{1}{2} \sum_n \left( \abs{\wckcout_n}^2 +\Re \left(\wckcout_n\wckcreg_n^{*}\right)\right)
\f] | The \f$ \wckcreg, \wckcout \f$ coefficients have dimension \f$ \sqrt{\mathrm{W}} \f$. |
| Kristensson II \cite kristensson_scattering_2016 | \f[ \wfkrreg, \wfkrout= \dots \f] | | | \f[
\vect E = \sum_n \left( \wckrreg_n \wfkrreg_n + \wckrout_n \wfkrout_n \right),
\\
\vect H = \frac{1}{i\eta_0\eta} \sum_n \left( \wckrreg_n \wfkrreg_n + \wckrout_n \wfkrout_n \right)
\f] | \f[
P = \frac{1}{2k^2\eta_0\eta} \sum_n \left( \abs{\wckrout_n}^2 +\Re \left(\wckrout_n\wckrreg_n^{*}\right)\right)
\f] | The \f$ \wckrreg, \wckrout \f$ coefficients have dimension \f$ \mathrm{V/m} \f$. |
| Reid \cite reid_electromagnetism_2016 | | | | \f[
\vect E = \sum_\alpha \pr{ \wcrreg_\alpha \wfrreg_\alpha + \wcrout_\alpha wfrout_\alpha }, \\
\vect H = \frac{1}{Z_0Z^r} \sum_\alpha \pr{ \wcrreg_\alpha \sigma_\alpha\wfrreg_\overline{\alpha} +
\wcrout_\alpha \sigma_\alpha\wfrout_\overline{\alpha}},
\f] where \f$ \sigma_{lmM} = +1, \sigma_{lmN}=-1, \overline{lmM}=lmM, \overline{lmN}=lmM, \f$ cf. eq. (6). The notation is not extremely consistent throughout Reid's memo. | | |
| Taylor \cite taylor_optical_2011 | \f[
\wfet_{mn}^{(j)} = \frac{n(n+1)}{kr}\sqrt{\frac{2n+1}{4\pi}\frac{\left(n-m\right)!}{\left(n+m\right)!}}P_{n}^{m}\left(\cos\theta\right)e^{im\phi}z_{n}^{j}\left(kr\right)\uvec{r} \\
+\left[\tilde{\tau}_{mn}\left(\cos\theta\right)\uvec{\theta}+i\tilde{\pi}_{mn}\left(\cos\theta\right)\uvec{\phi}\right]e^{im\phi}\frac{1}{kr}\frac{\ud\left(kr\,z_{n}^{j}\left(kr\right)\right)}{\ud(kr)}, \\
\wfmt_{mn}^{(j)} = \left[i\tilde{\pi}_{mn}\left(\cos\theta\right)\uvec{\theta}-\tilde{\tau}_{mn}\left(\cos\theta\right)\uvec{\phi}\right]e^{im\phi}z_{n}^{j}\left(kr\right)
\f] | \f[
\int_{S(kr)} \wfmt_{mn}^{(j)} \wfmt_{m'n'}^{(j)}\,\ud S = n(n+1) \abs{z_n^{(j)}}^2 \delta_{m,m'}\delta_{n,n'} ,\\
\int_{S(kr)} \wfet_{mn}^{(j)} \wfet_{m'n'}^{(j)}\,\ud S =
\pr{\pr{n(n+1)}^2 \abs{\frac{z_n^{(j)}}{kr}}^2 + n(n+1)\abs{\frac{1}{kr}\frac{\ud}{\ud(kr)}\pr{kr z_n^{(j)}}} } \delta_{m,m'}\delta_{n,n'} ,
\f] cf. \cite taylor_optical_2011, eqs. (2.4041). I suspect that this is also wrong and \f$\delta_{m,m'}\f$ should be replaced with \f$\delta_{m,-m'}\f$. | | \f[
\vect E = \sum_{mn} \pr{-i \pr{\wcetreg_{mn}\wfetreg_{mn} + \wcmtreg_{mn}\wfmtreg{mn}} +i \pr{\wcetout_{mn}\wfetout_{mn} + \wcmtout_{mn}\wfmtout_{mn}}}, \\
\vect H = n_{ext}\sum_{mn} \pr{- \pr{\wcmtreg_{mn}\wfetreg_{mn} + \wcetreg_{mn}\wfmtreg{mn}} + \pr{\wcmtout_{mn}\wfetout_{mn} + \wcetout_{mn}\wfmtout_{mn}}},
\f] | | Different sign for regular/scattered waves! Also WTF are the units of \f$ n_{ext} \f$? The whole definition seems rather inconsistent. |