qpms/besseltransforms/7-5-3

11 lines
2.1 KiB
Plaintext
Raw Normal View History

Integrate[(E^(-(c*x) + I*k0*x)*(1 - E^(-(c*x)))^7*BesselJ[3, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 3 && q == 5 && κ == 7 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0]
2 2 4 4 6 6 8 8
-8 c x + I k0 x c x 7 2 2 4 4 6 6 8 8 Pi 35 (33129291195 - 3192583680 k x + 759103488 k x - 1660944384 k x + 2147483648 k x ) (Cos[k x] + Sin[k x])
E (-1 + E ) (8 k x (-41247931725 + 5881075200 k x - 2952069120 k x - 15854469120 k x + 2147483648 k x ) Cos[-- + k x] - -----------------------------------------------------------------------------------------------------------------)
4 Sqrt[2]
Integrate::idiv: Integral of ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- does not converge on {0, Infinity}.
19/2 5 27/2
8589934592 k k0 Sqrt[2 Pi] x
Series[Integrate[(E^(-(c*x) + I*k0*x)*(1 - E^(-(c*x)))^7*BesselJ[3, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 3 && q == 5 && κ == 7 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0], {k, Infinity, 10}]