qpms/besseltransforms/7-4-2

10 lines
1.8 KiB
Plaintext
Raw Normal View History

Integrate[(E^(-(c*x) + I*k0*x)*(1 - E^(-(c*x)))^7*BesselJ[2, k*x])/(k0^4*x^3), {x, 0, Infinity}, Assumptions -> n == 2 && q == 4 && κ == 7 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0]
-8 c x + I k0 x c x 7 2 2 4 4 6 6 8 8 Pi 2 2 4 4 6 6 8 8
-(E (-1 + E ) (15 (-43692253605 + 3528645120 k x - 590413824 k x + 352321536 k x + 2147483648 k x ) Cos[-- + k x] + 4 Sqrt[2] k x (21606059475 - 2421619200 k x + 681246720 k x - 1761607680 k x + 2147483648 k x ) (Cos[k x] + Sin[k x])))
4
Integrate::idiv: Integral of --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- does not converge on {0, Infinity}.
19/2 4 25/2
8589934592 k k0 Sqrt[2 Pi] x
Series[Integrate[(E^(-(c*x) + I*k0*x)*(1 - E^(-(c*x)))^7*BesselJ[2, k*x])/(k0^4*x^3), {x, 0, Infinity}, Assumptions -> n == 2 && q == 4 && κ == 7 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0], {k, Infinity, 10}]