2018-01-18 19:55:44 +02:00
|
|
|
#include "bessels.h"
|
|
|
|
//#include "mdefs.h"
|
|
|
|
#include <complex.h>
|
|
|
|
#include <string.h>
|
|
|
|
#define SQ(x) ((x)*(x))
|
|
|
|
|
|
|
|
#define MAXQM 1
|
|
|
|
#define MAXN 2
|
|
|
|
#define MAXKAPPA 5
|
|
|
|
|
|
|
|
typedef complex double (*lrhankelspec)(double, double, double,
|
|
|
|
const complex double *,
|
|
|
|
const complex double *,
|
|
|
|
const complex double *,
|
|
|
|
const complex double *);
|
|
|
|
// complex double fun(double c, double k0, double k, ccd *a, ccd *b, ccd *d, ccd *e)
|
|
|
|
|
|
|
|
|
|
|
|
complex double fk5q1n0l(double c, double k0, double k,
|
|
|
|
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
|
2018-01-18 22:30:14 +02:00
|
|
|
// FIXME
|
2018-01-18 19:55:44 +02:00
|
|
|
return (e[0]-5*e[1]+10*e[2]-10*e[3]+5*e[4]-e[5])/k0;
|
|
|
|
}
|
|
|
|
complex double fk5q1n1l(double c, double k0, double k,
|
|
|
|
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
|
2018-01-18 22:30:14 +02:00
|
|
|
// FIXME
|
2018-01-18 19:55:44 +02:00
|
|
|
return (-d[0]+5*d[1]-10*d[2]+10*d[3]-5*d[4]+d[5])/(k0*k);
|
|
|
|
}
|
|
|
|
complex double fk5q1n2l(double c, double k0, double k,
|
2018-01-18 22:30:14 +02:00
|
|
|
const complex double *a, const complex double *b, const complex double *d, const complex double *e) { double t = 2/(k*k);
|
|
|
|
// FIXME
|
2018-01-18 19:55:44 +02:00
|
|
|
double t = 2/(k*k);
|
|
|
|
return ( (e[0] - t*a[0] + t*d[0]*a[0])
|
|
|
|
-5 * (e[1] - t*a[1] + t*d[1]*a[1])
|
|
|
|
+10 *(e[2] - t*a[2] + t*d[2]*a[2])
|
|
|
|
-10 *(e[3] - t*a[3] + t*d[3]*a[3])
|
|
|
|
+5 * (e[4] - t*a[4] + t*d[4]*a[4])
|
|
|
|
- (e[5] - t*a[5] + t*d[5]*a[5])
|
|
|
|
)/k0;
|
|
|
|
}
|
|
|
|
complex double fk5q2n0l(double c, double k0, double k,
|
|
|
|
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
|
|
|
|
return 0; // FIXME
|
|
|
|
}
|
|
|
|
complex double fk5q2n1l(double c, double k0, double k,
|
|
|
|
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
|
2018-01-18 22:30:14 +02:00
|
|
|
// FIXME
|
2018-01-18 19:55:44 +02:00
|
|
|
return ( b[0]*a[0]
|
|
|
|
- 5 *b[1]*a[1]
|
|
|
|
+10 *b[2]*a[2]
|
|
|
|
-10 *b[3]*a[3]
|
|
|
|
+ 5 *b[4]*a[4]
|
|
|
|
- b[5]*a[5]
|
|
|
|
)/(k*k0*k0);
|
|
|
|
}
|
|
|
|
complex double fk5q2n2l(double c, double k0, double k,
|
|
|
|
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
|
|
|
|
return ( b[0]*a[0]*a[0]
|
|
|
|
+ 5 * b[1]*a[1]*a[1]
|
|
|
|
-10 * b[2]*a[2]*a[2]
|
|
|
|
+10 * b[3]*a[3]*a[3]
|
|
|
|
- 5 * b[4]*a[4]*a[4]
|
|
|
|
+ b[5]*a[5]*a[5]
|
|
|
|
) / (k*k*k0*k0);
|
|
|
|
}
|
|
|
|
|
2018-01-18 22:30:14 +02:00
|
|
|
complex double fk5q1n0s(double c, double k0, double k,
|
|
|
|
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
|
|
|
|
return (e[0]-5*e[1]+10*e[2]-10*e[3]+5*e[4]-e[5])/k0;
|
|
|
|
}
|
|
|
|
complex double fk5q1n1s(double c, double k0, double k,
|
|
|
|
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
|
|
|
|
return (-d[0]+5*d[1]-10*d[2]+10*d[3]-5*d[4]+d[5])/(k0*k);
|
|
|
|
}
|
|
|
|
complex double fk5q1n2s(double c, double k0, double k,
|
|
|
|
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
|
|
|
|
double t = 2/(k*k);
|
|
|
|
return ( (e[0] - t*a[0] + t*d[0]*a[0])
|
|
|
|
-5 * (e[1] - t*a[1] + t*d[1]*a[1])
|
|
|
|
+10 *(e[2] - t*a[2] + t*d[2]*a[2])
|
|
|
|
-10 *(e[3] - t*a[3] + t*d[3]*a[3])
|
|
|
|
+5 * (e[4] - t*a[4] + t*d[4]*a[4])
|
|
|
|
- (e[5] - t*a[5] + t*d[5]*a[5])
|
|
|
|
)/k0;
|
|
|
|
}
|
|
|
|
complex double fk5q2n0l(double c, double k0, double k,
|
|
|
|
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
|
|
|
|
return 0; // FIXME
|
|
|
|
}
|
|
|
|
complex double fk5q2n1s(double c, double k0, double k,
|
|
|
|
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
|
|
|
|
return ( b[0]*a[0]
|
|
|
|
- 5 *b[1]*a[1]
|
|
|
|
+10 *b[2]*a[2]
|
|
|
|
-10 *b[3]*a[3]
|
|
|
|
+ 5 *b[4]*a[4]
|
|
|
|
- b[5]*a[5]
|
|
|
|
)/(k*k0*k0);
|
|
|
|
}
|
|
|
|
complex double fk5q2n2s(double c, double k0, double k,
|
|
|
|
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
|
|
|
|
// FIXME
|
|
|
|
return ( b[0]*a[0]*a[0]
|
|
|
|
+ 5 * b[1]*a[1]*a[1]
|
|
|
|
-10 * b[2]*a[2]*a[2]
|
|
|
|
+10 * b[3]*a[3]*a[3]
|
|
|
|
- 5 * b[4]*a[4]*a[4]
|
|
|
|
+ b[5]*a[5]*a[5]
|
|
|
|
) / (k*k*k0*k0);
|
|
|
|
}
|
|
|
|
|
2018-01-18 19:55:44 +02:00
|
|
|
#if 0
|
|
|
|
complex double fk5q1n0s(double c, double k0, double k,
|
|
|
|
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
|
|
|
|
return (p[0]-5*p[1]+10*p[2]-10*p[3]+5*p[4]-p[5])/k0;
|
|
|
|
}
|
|
|
|
complex double fk5q1n1s(double c, double k0, double k,
|
|
|
|
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
|
|
|
|
return ;
|
|
|
|
}
|
|
|
|
complex double fk5q1n2s(double c, double k0, double k,
|
|
|
|
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
|
|
|
|
return ;
|
|
|
|
}
|
|
|
|
complex double fk5q2n0s(double c, double k0, double k,
|
|
|
|
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
|
|
|
|
return ;
|
|
|
|
}
|
|
|
|
complex double fk5q2n1s(double c, double k0, double k,
|
|
|
|
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
|
|
|
|
return ;
|
|
|
|
}
|
|
|
|
complex double fk5q2n2s(double c, double k0, double k,
|
|
|
|
const complex double *a, const complex double *b, const complex double *d, const complex double *e) {
|
|
|
|
return ;
|
|
|
|
}
|
|
|
|
|
|
|
|
static lrhankelspec transfuns_n[MAXKAPPA+1][MAXQM+1][MAXN+1] = {
|
|
|
|
{NULL,NULL,NULL},{NULL,NULL,NULL},{NULL,NULL,NULL},
|
|
|
|
{NULL,NULL,NULL},{NULL,NULL,NULL},{NULL,NULL,NULL},
|
|
|
|
{NULL,NULL,NULL},{NULL,NULL,NULL},{NULL,NULL,NULL},
|
|
|
|
{NULL,NULL,NULL},{NULL,NULL,NULL},{NULL,NULL,NULL},
|
|
|
|
{NULL,NULL,NULL},{NULL,NULL,NULL},{NULL,NULL,NULL},
|
|
|
|
{TODO,TODO,TODO},{TODO,TODO,TODO},{TODO,TODO,TODO}
|
|
|
|
};
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static lrhankelspec transfuns_f[MAXKAPPA+1][MAXQM+1][MAXN+1] = {
|
|
|
|
{{NULL,NULL,NULL},{NULL,NULL,NULL}},
|
|
|
|
{{NULL,NULL,NULL},{NULL,NULL,NULL}},
|
|
|
|
{{NULL,NULL,NULL},{NULL,NULL,NULL}},
|
|
|
|
{{NULL,NULL,NULL},{NULL,NULL,NULL}},
|
|
|
|
{{NULL,NULL,NULL},{NULL,NULL,NULL}},
|
|
|
|
{{fk5q1n0l,fk5q1n1l,fk5q1n2l},{fk5q2n0l/*FIXME*/,fk5q2n1l,fk5q2n2l}}
|
|
|
|
};
|
|
|
|
|
|
|
|
void lrhankel_recpart_fill(complex double *target,
|
|
|
|
size_t maxn, size_t lrk_cutoff,
|
|
|
|
complex double *hct,
|
|
|
|
unsigned kappa, double c, double k0, double k)
|
|
|
|
{
|
|
|
|
memset(target, 0, (maxn+1)*sizeof(complex double));
|
|
|
|
complex double a[kappa+1], b[kappa+1], d[kappa+1], e[kappa+1];
|
|
|
|
for (size_t sigma = 0; sigma <= kappa; ++sigma) {
|
|
|
|
a[sigma] = (sigma * c - I * k0);
|
|
|
|
b[sigma] = csqrt(1+k*k/(a[sigma]*a[sigma]));
|
|
|
|
d[sigma] = 1/b[sigma];
|
|
|
|
e[sigma] = d[sigma] / a[sigma];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-01-18 22:30:14 +02:00
|
|
|
#include <stdio.h>
|
|
|
|
int main() {
|
|
|
|
double k0 = 0.7;
|
|
|
|
double c = 0.1324;
|
|
|
|
double kmin = 0.000;
|
|
|
|
double kmax = 20;
|
|
|
|
double kstep = 0.001;
|
|
|
|
size_t kappa = 5;
|
2018-01-18 19:55:44 +02:00
|
|
|
|
2018-01-18 22:30:14 +02:00
|
|
|
for (double k = kmin; k <= kmax; k += kstep) {
|
|
|
|
printf("%f ", k);
|
|
|
|
complex double a[kappa+1], b[kappa+1], d[kappa+1], e[kappa+1];
|
|
|
|
for (size_t sigma = 0; sigma <= kappa; ++sigma) {
|
|
|
|
a[sigma] = (sigma * c - I * k0);
|
|
|
|
b[sigma] = csqrt(1+k*k/(a[sigma]*a[sigma]));
|
|
|
|
d[sigma] = 1/b[sigma];
|
|
|
|
e[sigma] = d[sigma] / a[sigma];
|
|
|
|
}
|
|
|
|
for (size_t qm = 0; qm <= MAXQM; ++qm)
|
|
|
|
for (size_t n = 0; n <= MAXN; ++n)
|
|
|
|
if (!((qm==1)&&(n==0))){ // skip q==2, n=0 for now
|
|
|
|
// complex double fun(double c, double k0, double k, ccd *a, ccd *b, ccd *d, ccd *e)
|
|
|
|
complex double result =
|
|
|
|
transfuns_f[kappa][qm][n](c,k0,k,a,b,d,e);
|
|
|
|
printf("%.16e %.16e ", creal(result), cimag(result));
|
|
|
|
}
|
|
|
|
printf("\n");
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|