218 lines
4.7 KiB
Plaintext
218 lines
4.7 KiB
Plaintext
|
#LyX 2.1 created this file. For more info see http://www.lyx.org/
|
|||
|
\lyxformat 474
|
|||
|
\begin_document
|
|||
|
\begin_header
|
|||
|
\textclass article
|
|||
|
\begin_preamble
|
|||
|
\usepackage{unicode-math}
|
|||
|
|
|||
|
% Toto je trik, jimž se z fontspec získá familyname pro následující
|
|||
|
\ExplSyntaxOn
|
|||
|
\DeclareExpandableDocumentCommand{\getfamilyname}{m}
|
|||
|
{
|
|||
|
\use:c { g__fontspec_ \cs_to_str:N #1 _family }
|
|||
|
}
|
|||
|
\ExplSyntaxOff
|
|||
|
|
|||
|
% definujeme novou rodinu, jež se volá pomocí \MyCyr pro běžné použití, avšak pro účely \DeclareSymbolFont je nutno získat název pomocí getfamilyname definovaného výše
|
|||
|
\newfontfamily\MyCyr{CMU Serif}
|
|||
|
|
|||
|
\DeclareSymbolFont{cyritletters}{EU1}{\getfamilyname\MyCyr}{m}{it}
|
|||
|
\newcommand{\makecyrmathletter}[1]{%
|
|||
|
\begingroup\lccode`a=#1\lowercase{\endgroup
|
|||
|
\Umathcode`a}="0 \csname symcyritletters\endcsname\space #1
|
|||
|
}
|
|||
|
\count255="409
|
|||
|
\loop\ifnum\count255<"44F
|
|||
|
\advance\count255 by 1
|
|||
|
\makecyrmathletter{\count255}
|
|||
|
\repeat
|
|||
|
|
|||
|
\renewcommand{\lyxmathsym}[1]{#1}
|
|||
|
\end_preamble
|
|||
|
\use_default_options true
|
|||
|
\maintain_unincluded_children false
|
|||
|
\language english
|
|||
|
\language_package default
|
|||
|
\inputencoding auto
|
|||
|
\fontencoding global
|
|||
|
\font_roman TeX Gyre Pagella
|
|||
|
\font_sans default
|
|||
|
\font_typewriter default
|
|||
|
\font_math default
|
|||
|
\font_default_family default
|
|||
|
\use_non_tex_fonts true
|
|||
|
\font_sc false
|
|||
|
\font_osf true
|
|||
|
\font_sf_scale 100
|
|||
|
\font_tt_scale 100
|
|||
|
\graphics default
|
|||
|
\default_output_format pdf4
|
|||
|
\output_sync 0
|
|||
|
\bibtex_command default
|
|||
|
\index_command default
|
|||
|
\paperfontsize default
|
|||
|
\spacing single
|
|||
|
\use_hyperref true
|
|||
|
\pdf_title "Accelerating lattice mode calculations with T-matrix method"
|
|||
|
\pdf_author "Marek Nečada"
|
|||
|
\pdf_bookmarks true
|
|||
|
\pdf_bookmarksnumbered false
|
|||
|
\pdf_bookmarksopen false
|
|||
|
\pdf_bookmarksopenlevel 1
|
|||
|
\pdf_breaklinks false
|
|||
|
\pdf_pdfborder false
|
|||
|
\pdf_colorlinks false
|
|||
|
\pdf_backref false
|
|||
|
\pdf_pdfusetitle true
|
|||
|
\papersize default
|
|||
|
\use_geometry false
|
|||
|
\use_package amsmath 1
|
|||
|
\use_package amssymb 1
|
|||
|
\use_package cancel 1
|
|||
|
\use_package esint 1
|
|||
|
\use_package mathdots 1
|
|||
|
\use_package mathtools 1
|
|||
|
\use_package mhchem 1
|
|||
|
\use_package stackrel 1
|
|||
|
\use_package stmaryrd 1
|
|||
|
\use_package undertilde 1
|
|||
|
\cite_engine basic
|
|||
|
\cite_engine_type default
|
|||
|
\biblio_style plain
|
|||
|
\use_bibtopic false
|
|||
|
\use_indices false
|
|||
|
\paperorientation portrait
|
|||
|
\suppress_date false
|
|||
|
\justification true
|
|||
|
\use_refstyle 1
|
|||
|
\index Index
|
|||
|
\shortcut idx
|
|||
|
\color #008000
|
|||
|
\end_index
|
|||
|
\secnumdepth 3
|
|||
|
\tocdepth 3
|
|||
|
\paragraph_separation indent
|
|||
|
\paragraph_indentation default
|
|||
|
\quotes_language english
|
|||
|
\papercolumns 1
|
|||
|
\papersides 1
|
|||
|
\paperpagestyle default
|
|||
|
\tracking_changes false
|
|||
|
\output_changes false
|
|||
|
\html_math_output 0
|
|||
|
\html_css_as_file 0
|
|||
|
\html_be_strict false
|
|||
|
\end_header
|
|||
|
|
|||
|
\begin_body
|
|||
|
|
|||
|
\begin_layout Title
|
|||
|
\begin_inset FormulaMacro
|
|||
|
\newcommand{\vect}[1]{\mathbf{#1}}
|
|||
|
\end_inset
|
|||
|
|
|||
|
Accelerating lattice mode calculations with
|
|||
|
\begin_inset Formula $T$
|
|||
|
\end_inset
|
|||
|
|
|||
|
-matrix method
|
|||
|
\end_layout
|
|||
|
|
|||
|
\begin_layout Author
|
|||
|
Marek Nečada
|
|||
|
\end_layout
|
|||
|
|
|||
|
\begin_layout Section
|
|||
|
Formulation of the problem
|
|||
|
\end_layout
|
|||
|
|
|||
|
\begin_layout Standard
|
|||
|
Assume a system of compact EM scatterers in otherwise homogeneous and isotropic
|
|||
|
medium, and assume that the system, i.e.
|
|||
|
both the medium and the scatterers, have linear response.
|
|||
|
A scattering problem in such system can be written as
|
|||
|
\begin_inset Formula
|
|||
|
\[
|
|||
|
A_{α}=T_{α}P_{α}=T_{α}(\sum_{β}S_{α\leftarrowβ}A_{β}+P_{0α})
|
|||
|
\]
|
|||
|
|
|||
|
\end_inset
|
|||
|
|
|||
|
where
|
|||
|
\begin_inset Formula $T_{α}$
|
|||
|
\end_inset
|
|||
|
|
|||
|
is the
|
|||
|
\begin_inset Formula $T$
|
|||
|
\end_inset
|
|||
|
|
|||
|
-matrix for scatterer α,
|
|||
|
\begin_inset Formula $A_{α}$
|
|||
|
\end_inset
|
|||
|
|
|||
|
is its vector of the scattered wave expansion coefficient (the multipole
|
|||
|
indices are not explicitely indicated here) and
|
|||
|
\begin_inset Formula $P_{α}$
|
|||
|
\end_inset
|
|||
|
|
|||
|
is the local expansion of the incoming sources.
|
|||
|
|
|||
|
\begin_inset Formula $S_{α\leftarrowβ}$
|
|||
|
\end_inset
|
|||
|
|
|||
|
is ...
|
|||
|
and ...
|
|||
|
is ...
|
|||
|
\end_layout
|
|||
|
|
|||
|
\begin_layout Standard
|
|||
|
...
|
|||
|
\end_layout
|
|||
|
|
|||
|
\begin_layout Standard
|
|||
|
\begin_inset Formula
|
|||
|
\[
|
|||
|
\sum_{β}(\delta_{αβ}-T_{α}S_{α\leftarrowβ})A_{β}=T_{α}P_{0α}.
|
|||
|
\]
|
|||
|
|
|||
|
\end_inset
|
|||
|
|
|||
|
|
|||
|
\end_layout
|
|||
|
|
|||
|
\begin_layout Standard
|
|||
|
Now suppose that the scatterers constitute an infinite lattice
|
|||
|
\end_layout
|
|||
|
|
|||
|
\begin_layout Standard
|
|||
|
\begin_inset Formula
|
|||
|
\[
|
|||
|
\sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{\vect aα}S_{\vect aα\leftarrow\vect bβ})A_{\vect bβ}=T_{\vect aα}P_{0\vect aα}.
|
|||
|
\]
|
|||
|
|
|||
|
\end_inset
|
|||
|
|
|||
|
Due to the periodicity, we can write
|
|||
|
\begin_inset Formula $S_{\vect aα\leftarrow\vect bβ}=S_{α\leftarrowβ}(\vect b-\vect a)$
|
|||
|
\end_inset
|
|||
|
|
|||
|
.
|
|||
|
In order to find lattice modes, we search for solutions with zero RHS
|
|||
|
\begin_inset Formula
|
|||
|
\[
|
|||
|
\sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{\vect aα}S_{\vect aα\leftarrow\vect bβ})A_{\vect bβ}=0
|
|||
|
\]
|
|||
|
|
|||
|
\end_inset
|
|||
|
|
|||
|
and we assume periodic solution
|
|||
|
\begin_inset Formula $A_{\vect b\alpha}(\vect k)=A_{\vect a\alpha}e^{i\vect k\cdot\vect r_{\vect b-\vect a}}$
|
|||
|
\end_inset
|
|||
|
|
|||
|
.
|
|||
|
\end_layout
|
|||
|
|
|||
|
\end_body
|
|||
|
\end_document
|