2017-05-09 16:46:11 +03:00
#!/usr/bin/env python3
import argparse , re , random , string
import subprocess
from scipy . constants import hbar , e as eV , pi , c
def make_action_sharedlist ( opname , listname ) :
class opAction ( argparse . Action ) :
def __call__ ( self , parser , args , values , option_string = None ) :
if ( not hasattr ( args , listname ) ) or getattr ( args , listname ) is None :
setattr ( args , listname , list ( ) )
getattr ( args , listname ) . append ( ( opname , values ) )
return opAction
parser = argparse . ArgumentParser ( )
#TODO? použít type=argparse.FileType('r') ?
parser . add_argument ( ' --TMatrix ' , action = ' store ' , required = True , help = ' Path to TMatrix file ' )
#parser.add_argument('--griddir', action='store', required=True, help='Path to the directory with precalculated translation operators')
parser . add_argument ( ' --output_prefix ' , action = ' store ' , required = True , help = ' Prefix to the npz output (will be appended frequency, hexside and chunkno) ' )
#sizepar = parser.add_mutually_exclusive_group(required=True)
parser . add_argument ( ' --hexside ' , action = ' store ' , type = float , required = True , help = ' Lattice hexagon size length ' )
parser . add_argument ( ' --plot_TMatrix ' , action = ' store_true ' , help = ' Visualise TMatrix on the first page of the output ' )
#parser.add_argument('--SVD_output', action='store', help='Path to output singular value decomposition result')
parser . add_argument ( ' --maxlayer ' , action = ' store ' , type = int , default = 100 , help = ' How far to sum the lattice points to obtain the dispersion ' )
parser . add_argument ( ' --scp_to ' , action = ' store ' , metavar = ' N ' , type = str , help = ' SCP the output files to a given destination ' )
parser . add_argument ( ' --background_permittivity ' , action = ' store ' , type = float , default = 1. , help = ' Background medium relative permittivity (default 1) ' )
parser . add_argument ( ' --eVfreq ' , action = ' store ' , required = True , type = float , help = ' Frequency in eV ' )
parser . add_argument ( ' --kdensity ' , action = ' store ' , type = int , default = 33 , help = ' Number of k-points per x-axis segment ' )
parser . add_argument ( ' --chunklen ' , action = ' store ' , type = int , default = 1000 , help = ' Number of k-points per output file (default 1000) ' )
parser . add_argument ( ' --lMax ' , action = ' store ' , type = int , help = ' Override lMax from the TMatrix file ' )
#TODO some more sophisticated x axis definitions
parser . add_argument ( ' --gaussian ' , action = ' store ' , type = float , metavar = ' σ ' , help = ' Use a gaussian envelope for weighting the interaction matrix contributions (depending on the distance), measured in unit cell lengths (?) FIxME). ' )
popgrp = parser . add_argument_group ( title = ' Operations ' )
popgrp . add_argument ( ' --tr ' , dest = ' ops ' , action = make_action_sharedlist ( ' tr ' , ' ops ' ) , default = list ( ) ) # the default value for dest can be set once
popgrp . add_argument ( ' --tr0 ' , dest = ' ops ' , action = make_action_sharedlist ( ' tr0 ' , ' ops ' ) )
popgrp . add_argument ( ' --tr1 ' , dest = ' ops ' , action = make_action_sharedlist ( ' tr1 ' , ' ops ' ) )
popgrp . add_argument ( ' --sym ' , dest = ' ops ' , action = make_action_sharedlist ( ' sym ' , ' ops ' ) )
popgrp . add_argument ( ' --sym0 ' , dest = ' ops ' , action = make_action_sharedlist ( ' sym0 ' , ' ops ' ) )
popgrp . add_argument ( ' --sym1 ' , dest = ' ops ' , action = make_action_sharedlist ( ' sym1 ' , ' ops ' ) )
#popgrp.add_argument('--mult', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult', 'ops'))
#popgrp.add_argument('--mult0', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult0', 'ops'))
#popgrp.add_argument('--mult1', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult1', 'ops'))
popgrp . add_argument ( ' --multl ' , dest = ' ops ' , nargs = 3 , metavar = ( ' INCL[,INCL,...] ' , ' SCATL[,SCATL,...] ' , ' MULTIPLIER ' ) , action = make_action_sharedlist ( ' multl ' , ' ops ' ) )
popgrp . add_argument ( ' --multl0 ' , dest = ' ops ' , nargs = 3 , metavar = ( ' INCL[,INCL,...] ' , ' SCATL[,SCATL,...] ' , ' MULTIPLIER ' ) , action = make_action_sharedlist ( ' multl0 ' , ' ops ' ) )
popgrp . add_argument ( ' --multl1 ' , dest = ' ops ' , nargs = 3 , metavar = ( ' INCL[,INCL,...] ' , ' SCATL[,SCATL,...] ' , ' MULTIPLIER ' ) , action = make_action_sharedlist ( ' multl1 ' , ' ops ' ) )
parser . add_argument ( ' --frequency_multiplier ' , action = ' store ' , type = float , default = 1. , help = ' Multiplies the frequencies in the TMatrix file by a given factor. ' )
# TODO enable more flexible per-sublattice specification
pargs = parser . parse_args ( )
print ( pargs )
maxlayer = pargs . maxlayer
hexside = pargs . hexside
eVfreq = pargs . eVfreq
freq = eVfreq * eV / hbar
TMatrix_file = pargs . TMatrix
epsilon_b = pargs . background_permittivity #2.3104
gaussianSigma = pargs . gaussian if pargs . gaussian else None # hexside * 222 / 7
interpfreqfactor = pargs . frequency_multiplier
scp_dest = pargs . scp_to if pargs . scp_to else None
kdensity = pargs . kdensity
chunklen = pargs . chunklen
ops = list ( )
opre = re . compile ( ' (tr|sym|copy|multl|mult)( \ d*) ' )
for oparg in pargs . ops :
opm = opre . match ( oparg [ 0 ] )
if opm :
ops . append ( ( ( opm . group ( 2 ) , ) if opm . group ( 2 ) else ( 0 , 1 ) , opm . group ( 1 ) , oparg [ 1 ] ) )
else :
raise # should not happen
print ( ops )
# -----------------finished basic CLI parsing (except for op arguments) ------------------
import time
begtime = time . time ( )
import qpms
import numpy as np
import os , sys , warnings , math
from scipy import interpolate
nx = None
s3 = math . sqrt ( 3 )
# specifikace T-matice zde
cdn = c / math . sqrt ( epsilon_b )
TMatrices_orig , freqs_orig , freqs_weirdunits_orig , lMaxTM = qpms . loadScuffTMatrices ( TMatrix_file )
lMax = lMaxTM
if pargs . lMax :
lMax = pargs . lMax if pargs . lMax else lMaxTM
my , ny = qpms . get_mn_y ( lMax )
nelem = len ( my )
if pargs . lMax : #force commandline specified lMax
TMatrices_orig = TMatrices_orig [ . . . , 0 : nelem , : , 0 : nelem ]
ž = np . arange ( 2 * nelem )
tž = ž / / nelem
mž = my [ ž % nelem ]
nž = ny [ ž % nelem ]
TEž = ž [ ( mž + nž + tž ) % 2 == 0 ]
TMž = ž [ ( mž + nž + tž ) % 2 == 1 ]
č = np . arange ( 2 * 2 * nelem )
žč = č % ( 2 * nelem )
tč = tž [ žč ]
mč = mž [ žč ]
nč = nž [ žč ]
TEč = č [ ( mč + nč + tč ) % 2 == 0 ]
TMč = č [ ( mč + nč + tč ) % 2 == 1 ]
TMatrices = np . array ( np . broadcast_to ( TMatrices_orig [ : , nx , : , : , : , : ] , ( len ( freqs_orig ) , 2 , 2 , nelem , 2 , nelem ) ) )
#TMatrices[:,:,:,:,:,ny==3] *= factor13inc
#TMatrices[:,:,:,ny==3,:,:] *= factor13scat
xfl = qpms . xflip_tyty ( lMax )
yfl = qpms . yflip_tyty ( lMax )
zfl = qpms . zflip_tyty ( lMax )
c2rot = qpms . apply_matrix_left ( qpms . yflip_yy ( 3 ) , qpms . xflip_yy ( 3 ) , - 1 )
reCN = re . compile ( ' ( \ d*)C( \ d+) ' )
#TODO C nekonečno
for op in ops :
if op [ 0 ] == ' all ' :
targets = ( 0 , 1 )
elif isinstance ( op [ 0 ] , int ) :
targets = ( op [ 0 ] , )
else :
targets = op [ 0 ]
if op [ 1 ] == ' sym ' :
mCN = reCN . match ( op [ 2 ] ) # Fuck van Rossum for not having assignments inside expressions
if op [ 2 ] == ' σ _z' :
for t in targets :
TMatrices [ : , t ] = ( TMatrices [ : , t ] + qpms . apply_ndmatrix_left ( zfl , qpms . apply_ndmatrix_left ( zfl , TMatrices [ : , t ] , ( - 4 , - 3 ) ) , ( - 2 , - 1 ) ) ) / 2
elif op [ 2 ] == ' σ _y' :
for t in targets :
TMatrices [ : , t ] = ( TMatrices [ : , t ] + qpms . apply_ndmatrix_left ( yfl , qpms . apply_ndmatrix_left ( yfl , TMatrices [ : , t ] , ( - 4 , - 3 ) ) , ( - 2 , - 1 ) ) ) / 2
elif op [ 2 ] == ' σ _x' :
for t in targets :
TMatrices [ : , t ] = ( TMatrices [ : , t ] + qpms . apply_ndmatrix_left ( xfl , qpms . apply_ndmatrix_left ( xfl , TMatrices [ : , t ] , ( - 4 , - 3 ) ) , ( - 2 , - 1 ) ) ) / 2
elif op [ 2 ] == ' C2 ' : # special case of the latter
for t in targets :
TMatrices [ : , t ] = ( TMatrices [ : , t ] + qpms . apply_matrix_left ( c2rot , qpms . apply_matrix_left ( c2rot , TMatrices [ : , t ] , - 3 ) , - 1 ) ) / 2
elif mCN :
rotN = int ( mCN . group ( 2 ) )
TMatrix_contribs = np . empty ( ( rotN , TMatrices . shape [ 0 ] , 2 , nelem , 2 , nelem ) , dtype = np . complex_ )
for t in targets :
for i in range ( rotN ) :
rotangle = 2 * np . pi * i / rotN
rot = qpms . WignerD_yy_fromvector ( lMax , np . array ( [ 0 , 0 , rotangle ] ) )
rotinv = qpms . WignerD_yy_fromvector ( lMax , np . array ( [ 0 , 0 , - rotangle ] ) )
TMatrix_contribs [ i ] = qpms . apply_matrix_left ( rot , qpms . apply_matrix_left ( rotinv , TMatrices [ : , t ] , - 3 ) , - 1 )
TMatrices [ : , t ] = np . sum ( TMatrix_contribs , axis = 0 ) / rotN
else :
raise
elif op [ 1 ] == ' tr ' :
mCN = reCN . match ( op [ 2 ] ) # Fuck van Rossum for not having assignments inside expressions
if op [ 2 ] == ' σ _z' :
for t in targets :
TMatrices [ : , t ] = qpms . apply_ndmatrix_left ( zfl , qpms . apply_ndmatrix_left ( zfl , TMatrices [ : , t ] , ( - 4 , - 3 ) ) , ( - 2 , - 1 ) )
elif op [ 2 ] == ' σ _y' :
for t in targets :
TMatrices [ : , t ] = qpms . apply_ndmatrix_left ( yfl , qpms . apply_ndmatrix_left ( yfl , TMatrices [ : , t ] , ( - 4 , - 3 ) ) , ( - 2 , - 1 ) )
elif op [ 2 ] == ' σ _x' :
for t in targets :
TMatrices [ : , t ] = qpms . apply_ndmatrix_left ( xfl , qpms . apply_ndmatrix_left ( xfl , TMatrices [ : , t ] , ( - 4 , - 3 ) ) , ( - 2 , - 1 ) )
elif op [ 2 ] == ' C2 ' :
for t in targets :
TMatrices [ : , t ] = qpms . apply_matrix_left ( c2rot , qpms . apply_matrix_left ( c2rot , TMatrices [ : , t ] , - 3 ) , - 1 )
elif mCN :
rotN = int ( mCN . group ( 2 ) )
power = int ( mCN . group ( 1 ) ) if mCN . group ( 1 ) else 1
TMatrix_contribs = np . empty ( ( rotN , TMatrices . shape [ 0 ] , 2 , nelem , 2 , nelem ) , dtype = np . complex_ )
for t in targets :
rotangle = 2 * np . pi * power / rotN
rot = qpms . WignerD_yy_fromvector ( lMax , np . array ( [ 0 , 0 , rotangle ] ) )
rotinv = qpms . WignerD_yy_fromvector ( lMax , np . array ( [ 0 , 0 , - rotangle ] ) )
TMatrices [ : , t ] = qpms . apply_matrix_left ( rot , qpms . apply_matrix_left ( rotinv , TMatrices [ : , t ] , - 3 ) , - 1 )
else :
raise
elif op [ 1 ] == ' copy ' :
raise # not implemented
elif op [ 1 ] == ' mult ' :
raise # not implemented
elif op [ 1 ] == ' multl ' :
incy = np . full ( ( nelem , ) , False , dtype = bool )
for incl in op [ 2 ] [ 0 ] . split ( ' , ' ) :
l = int ( incl )
incy + = ( l == ny )
scaty = np . full ( ( nelem , ) , False , dtype = bool )
for scatl in op [ 2 ] [ 1 ] . split ( ' , ' ) :
l = int ( scatl )
scaty + = ( l == ny )
for t in targets :
TMatrices [ np . ix_ ( np . arange ( TMatrices . shape [ 0 ] ) , np . array ( [ t ] ) , np . array ( [ 0 , 1 ] ) , scaty , np . array ( [ 0 , 1 ] ) , incy ) ] * = float ( op [ 2 ] [ 2 ] )
else :
raise #unknown operation; should not happen
TMatrices_interp = interpolate . interp1d ( freqs_orig * interpfreqfactor , TMatrices , axis = 0 , kind = ' linear ' , fill_value = " extrapolate " )
klist_full = qpms . generate_trianglepoints ( kdensity , v3d = True , include_origin = True ) * 3 * math . pi / ( 3 * kdensity * hexside )
TMatrices_om = TMatrices_interp ( freq )
chunkn = math . ceil ( klist_full . shape [ 0 ] / chunklen )
metadata = np . array ( {
' maxlayer ' : maxlayer ,
' gaussianSigma ' : gaussianSigma ,
2017-05-09 18:40:32 +03:00
' epsilon_b ' : epsilon_b ,
2017-05-09 16:46:11 +03:00
' chunkn ' : chunkn ,
' TMatrix_file ' : TMatrix_file ,
' ops ' : ops ,
} )
for chunki in range ( chunkn ) :
svdout = ' %s _ %d nm_ %.4f _c %03d .npz ' % ( pargs . output_prefix , hexside / 1e-9 , eVfreq , chunki )
klist = klist_full [ chunki * chunklen : ( chunki + 1 ) * chunklen ]
svdres = qpms . hexlattice_zsym_getSVD ( lMax = lMax , TMatrices_om = TMatrices_om , epsilon_b = epsilon_b , hexside = hexside , maxlayer = maxlayer ,
omega = freq , klist = klist , gaussianSigma = gaussianSigma , onlyNmin = False )
#((svUfullTElist, svSfullTElist, svVfullTElist), (svUfullTMlist, svSfullTMlist, svVfullTMlist)) = svdres
np . savez ( svdout , omega = freq , klist = klist ,
metadata = metadata ,
uTE = svdres [ 0 ] [ 0 ] ,
vTE = svdres [ 0 ] [ 2 ] ,
sTE = svdres [ 0 ] [ 1 ] ,
uTM = svdres [ 1 ] [ 0 ] ,
vTM = svdres [ 1 ] [ 2 ] ,
sTM = svdres [ 1 ] [ 1 ] ,
)
svdres = None
if scp_dest :
if svdout :
subprocess . run ( [ ' scp ' , svdout , scp_dest ] )
print ( time . strftime ( " % H. % M: % S " , time . gmtime ( time . time ( ) - begtime ) ) )