qpms/ewald.lyx

468 lines
9.6 KiB
Plaintext
Raw Normal View History

#LyX 2.1 created this file. For more info see http://www.lyx.org/
\lyxformat 474
\begin_document
\begin_header
\textclass article
\begin_preamble
\usepackage{unicode-math}
% Toto je trik, jimž se z fontspec získá familyname pro následující
\ExplSyntaxOn
\DeclareExpandableDocumentCommand{\getfamilyname}{m}
{
\use:c { g__fontspec_ \cs_to_str:N #1 _family }
}
\ExplSyntaxOff
% definujeme novou rodinu, jež se volá pomocí \MyCyr pro běžné použití, avšak pro účely \DeclareSymbolFont je nutno získat název pomocí getfamilyname definovaného výše
\newfontfamily\MyCyr{CMU Serif}
\DeclareSymbolFont{cyritletters}{EU1}{\getfamilyname\MyCyr}{m}{it}
\newcommand{\makecyrmathletter}[1]{%
\begingroup\lccode`a=#1\lowercase{\endgroup
\Umathcode`a}="0 \csname symcyritletters\endcsname\space #1
}
\count255="409
\loop\ifnum\count255<"44F
\advance\count255 by 1
\makecyrmathletter{\count255}
\repeat
\renewcommand{\lyxmathsym}[1]{#1}
\end_preamble
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman TeX Gyre Pagella
\font_sans default
\font_typewriter default
\font_math default
\font_default_family default
\use_non_tex_fonts true
\font_sc false
\font_osf true
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format pdf4
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref true
\pdf_title "Accelerating lattice mode calculations with T-matrix method"
\pdf_author "Marek Nečada"
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks false
\pdf_pdfborder false
\pdf_colorlinks false
\pdf_backref false
\pdf_pdfusetitle true
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\uoft}[1]{\mathfrak{F}#1}
\end_inset
\begin_inset FormulaMacro
\newcommand{\uaft}[1]{\mathfrak{\mathbb{F}}#1}
\end_inset
\begin_inset FormulaMacro
\newcommand{\vect}[1]{\mathbf{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ud}{\mathrm{d}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\basis}[1]{\mathfrak{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\dc}[1]{Ш_{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\rec}[1]{#1^{-1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\recb}[1]{#1^{\widehat{-1}}}
\end_inset
\end_layout
\begin_layout Title
Accelerating lattice mode calculations with
\begin_inset Formula $T$
\end_inset
-matrix method
\end_layout
\begin_layout Author
Marek Nečada
\end_layout
\begin_layout Section
Formulation of the problem
\end_layout
\begin_layout Standard
Assume a system of compact EM scatterers in otherwise homogeneous and isotropic
medium, and assume that the system, i.e.
both the medium and the scatterers, have linear response.
A scattering problem in such system can be written as
\begin_inset Formula
\[
A_{α}=T_{α}P_{α}=T_{α}(\sum_{β}S_{α\leftarrowβ}A_{β}+P_{0α})
\]
\end_inset
where
\begin_inset Formula $T_{α}$
\end_inset
is the
\begin_inset Formula $T$
\end_inset
-matrix for scatterer α,
\begin_inset Formula $A_{α}$
\end_inset
is its vector of the scattered wave expansion coefficient (the multipole
indices are not explicitely indicated here) and
\begin_inset Formula $P_{α}$
\end_inset
is the local expansion of the incoming sources.
\begin_inset Formula $S_{α\leftarrowβ}$
\end_inset
is ...
and ...
is ...
\end_layout
\begin_layout Standard
...
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\sum_{β}(\delta_{αβ}-T_{α}S_{α\leftarrowβ})A_{β}=T_{α}P_{0α}.
\]
\end_inset
\end_layout
\begin_layout Standard
Now suppose that the scatterers constitute an infinite lattice
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{\vect aα}S_{\vect aα\leftarrow\vect bβ})A_{\vect bβ}=T_{\vect aα}P_{0\vect aα}.
\]
\end_inset
Due to the periodicity, we can write
\begin_inset Formula $S_{\vect aα\leftarrow\vect bβ}=S_{α\leftarrowβ}(\vect b-\vect a)$
\end_inset
.
In order to find lattice modes, we search for solutions with zero RHS
\begin_inset Formula
\[
\sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{\vect aα}S_{\vect aα\leftarrow\vect bβ})A_{\vect bβ}=0
\]
\end_inset
and we assume periodic solution
\begin_inset Formula $A_{\vect b\alpha}(\vect k)=A_{\vect a\alpha}e^{i\vect k\cdot\vect r_{\vect b-\vect a}}$
\end_inset
.
\end_layout
\begin_layout Section
Multidimensional Dirac comb
\end_layout
\begin_layout Subsection
1D
\end_layout
\begin_layout Standard
This is all from Wikipedia
\end_layout
\begin_layout Subsubsection
Definitions
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{eqnarray*}
Ш(t) & \equiv & \sum_{k=-\infty}^{\infty}\delta(t-k)\\
Ш_{T}(t) & \equiv & \sum_{k=-\infty}^{\infty}\delta(t-kT)=\frac{1}{T}Ш\left(\frac{t}{T}\right)
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Subsubsection
Fourier series representation
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
Ш_{T}(t)=\sum_{n=-\infty}^{\infty}e^{2\pi int/T}
\]
\end_inset
\end_layout
\begin_layout Subsubsection
Fourier transform
\end_layout
\begin_layout Standard
With unitary ordinary frequency Ft., i.e.
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\uoft f(\vect{\xi})\equiv\int_{\mathbb{R}^{n}}f(\vect x)e^{-2\pi i\vect x\cdot\vect{\xi}}\ud^{n}\vect x
\]
\end_inset
we have
\begin_inset Formula
\[
\uoft{Ш_{T}}(f)=\frac{1}{T}Ш_{\frac{1}{T}}(f)=\sum_{n=-\infty}^{\infty}e^{-i2\pi fnT}
\]
\end_inset
and with unitary angular frequency Ft., i.e.
\begin_inset Formula
\[
\uaft f(\vect k)\equiv\frac{1}{\left(2\pi\right)^{n}}\int_{\mathbb{R}^{n}}f(\vect x)e^{-2\pi i\vect x\cdot\vect k}\ud^{n}\vect x
\]
\end_inset
we have
\begin_inset Formula
\[
\uaft{Ш_{T}}(\omega)=\frac{\sqrt{2\pi}}{T}Ш_{\frac{2\pi}{T}}(\omega)=\frac{1}{\sqrt{2\pi}}\sum_{n=-\infty}^{\infty}e^{-i\omega nT}
\]
\end_inset
\end_layout
\begin_layout Subsection
Dirac comb for multidimensional lattices
\end_layout
\begin_layout Subsubsection
Definitions
\end_layout
\begin_layout Standard
Let
\begin_inset Formula $d$
\end_inset
be the dimensionality of the real vector space in question, and let
\begin_inset Formula $\basis u\equiv\left\{ \vect u_{i}\right\} _{i=1}^{d}$
\end_inset
denote a basis for some lattice in that space.
Let the corresponding lattice delta comb be
\begin_inset Formula
\[
\dc{\basis u}\left(\vect x\right)\equiv\sum_{n_{1}=-\infty}^{\infty}\ldots\sum_{n_{d}=-\infty}^{\infty}\delta\left(\vect x-\sum_{i=1}^{d}n_{i}\vect u_{i}\right).
\]
\end_inset
\end_layout
\begin_layout Standard
Furthemore, let
\begin_inset Formula $\rec{\basis u}\equiv\left\{ \rec{\vect u}_{i}\right\} _{i=1}^{d}$
\end_inset
be the reciprocal lattice basis, that is the basis satisfying
\begin_inset Formula $\vect u_{i}\cdot\rec{\vect u_{j}}=\delta_{ij}$
\end_inset
.
This slightly differs from the usual definition of a reciprocal basis,
here denoted
\begin_inset Formula $\recb{\basis u}\equiv\left\{ \recb{\vect u_{i}}\right\} _{i=1}^{d}$
\end_inset
, which satisfies
\begin_inset Formula $\vect u_{i}\cdot\recb{\vect u_{j}}=2\pi\delta_{ij}$
\end_inset
instead.
\end_layout
\begin_layout Subsubsection
Factorisation of a multidimensional lattice delta comb
\end_layout
\begin_layout Standard
By simple drawing, it can be seen that
\begin_inset Formula
\[
\dc{\basis u}(\vect x)=c_{\basis u}\prod_{i=1}^{d}\dc{}\left(\vect x\cdot\rec{\vect u_{i}}\right)
\]
\end_inset
where
\begin_inset Formula $c_{\basis u}$
\end_inset
is some numerical volume factor.
In order to determine
\begin_inset Formula $c_{\basis u}$
\end_inset
, let us consider only the
\begin_inset Quotes eld
\end_inset
zero tooth
\begin_inset Quotes erd
\end_inset
of the comb, leading to
\begin_inset Formula
\[
\delta^{d}(\vect x)=c_{\basis u}\prod_{i=1}^{d}\delta\left(\vect x\cdot\rec{\vect u_{i}}\right).
\]
\end_inset
From the scaling property of delta function,
\begin_inset Formula $\delta(ax)=\left|a\right|^{-1}\delta(x)$
\end_inset
, we get
\begin_inset Formula
\[
\delta^{d}(\vect x)=c_{\basis u}\prod_{i=1}^{d}\left\Vert \rec{\vect u_{i}}\right\Vert ^{-1}\delta\left(\vect x\cdot\frac{\rec{\vect u_{i}}}{\left\Vert \rec{\vect u_{i}}\right\Vert }\right).
\]
\end_inset
Applying both sides to a test function that is one at the origin, we get
\begin_inset Formula $c_{\basis u}=\prod_{i=1}^{d}\left\Vert \rec{\vect u_{i}}\right\Vert $
\end_inset
, and hence
\begin_inset Formula
\[
\dc{\basis u}(\vect x)=\prod_{i=1}^{d}\left\Vert \rec{\vect u_{i}}\right\Vert \dc{}\left(\vect x\cdot\rec{\vect u_{i}}\right).
\]
\end_inset
\end_layout
\begin_layout Subsubsection
Fourier series representation
\end_layout
\begin_layout Subsubsection
Fourier transform
\end_layout
\end_body
\end_document