qpms/qpms/tmatrices.py

467 lines
17 KiB
Python
Raw Normal View History

import numpy as np
use_moble_quaternion = False
try:
import quaternion, spherical_functions as sf # because of the Wigner matrices. These imports are SLOW.
use_moble_quaternion = True
except ImportError:
use_moble_quaternion = False
import re
from scipy import interpolate
from scipy.constants import hbar, e as eV, pi, c
from .cycommon import get_mn_y, get_nelem
from .cyquaternions import CQuat
ň = np.newaxis
from .types import NormalizationT, TMatrixSpec
# Transformations of spherical bases
def WignerD_mm(l, quat):
"""
Calculates Wigner D matrix (as an numpy (2*l+1,2*l+1)-shaped array)
for order l, and a rotation given by quaternion quat.
This represents the rotation of spherical vector basis
TODO doc
"""
if use_moble_quaternion:
indices = np.array([ [l,i,j] for i in range(-l,l+1) for j in range(-l,l+1)])
Delems = sf.Wigner_D_element(quat, indices).reshape(2*l+1,2*l+1)
return Delems
else:
Delems = np.zeros((2*l+1, 2*l+1), dtype=complex)
for i in range(-l,l+1):
for j in range(-l,l+1):
Delems[i,j] = quat.wignerDelem(l, i, j)
return Delems
def WignerD_mm_fromvector(l, vect):
"""
TODO doc
"""
if use_moble_quaternion:
return WignerD_mm(l, quaternion.from_rotation_vector(vect))
else:
return WignerD_mm(l, CQuat.from_rotvector(vect))
def WignerD_yy(lmax, quat):
"""
TODO doc
"""
my, ny = get_mn_y(lmax)
Delems = np.zeros((len(my),len(my)),dtype=complex)
b_in = 0
e_in = None
for l in range(1,lmax+1):
e_in = b_in + 2*l+1
Delems[b_in:e_in,b_in:e_in] = WignerD_mm(l, quat)
b_in = e_in
return Delems
def WignerD_yy_fromvector(lmax, vect):
"""
TODO doc
"""
if use_moble_quaternion:
return WignerD_yy(lmax, quaternion.from_rotation_vector(vect))
else:
return WignerD_yy(lMax, CQuat.from_rotvector(vect))
def identity_yy(lmax):
"""
TODO doc
"""
return np.eye(lMax2nelem(lMax))
def identity_tyty(lmax):
"""
TODO doc
"""
nelem = lMax2nelem(lmax)
return np.eye(2*nelem).reshape((2,nelem,2,nelem))
def xflip_yy(lmax):
"""
TODO doc
xflip = δ(m + m') δ(l - l')
(i.e. ones on the (m' m) antidiagonal
"""
my, ny = get_mn_y(lmax)
elems = np.zeros((len(my),len(my)),dtype=int)
b_in = 0
e_in = None
for l in range(1,lmax+1):
e_in = b_in + 2*l+1
elems[b_in:e_in,b_in:e_in] = np.eye(2*l+1)[::-1,:]
b_in = e_in
return elems
def xflip_tyy(lmax):
fl_yy = xflip_yy(lmax)
return np.array([fl_yy,-fl_yy])
def xflip_tyty(lmax):
fl_yy = xflip_yy(lmax)
nelem = fl_yy.shape[0]
fl_tyty = np.zeros((2,nelem,2,nelem),dtype=int)
fl_tyty[0,:,0,:] = fl_yy
fl_tyty[1,:,1,:] = -fl_yy
return fl_tyty
def yflip_yy(lmax):
"""
TODO doc
yflip = rot(z,pi/2) * xflip * rot(z,-pi/2)
= δ(m + m') δ(l - l') * (-1)**m
"""
my, ny = get_mn_y(lmax)
elems = xflip_yy(lmax)
elems[(my % 2)==1] = elems[(my % 2)==1] * -1 # Obvious sign of tiredness (this is correct but ugly; FIXME)
return elems
def yflip_tyy(lmax):
fl_yy = yflip_yy(lmax)
return np.array([fl_yy,-fl_yy])
def yflip_tyty(lmax):
fl_yy = yflip_yy(lmax)
nelem = fl_yy.shape[0]
fl_tyty = np.zeros((2,nelem,2,nelem),dtype=int)
fl_tyty[0,:,0,:] = fl_yy
fl_tyty[1,:,1,:] = -fl_yy
return fl_tyty
def zflip_yy(lmax):
"""
TODO doc
zflip = (-1)^(l+m)
"""
my, ny = get_mn_y(lmax)
elems = np.zeros((len(my), len(my)), dtype=int)
b_in = 0
e_in = None
for l in range(1,lmax+1):
e_in = b_in + 2*l+1
elems[b_in:e_in,b_in:e_in] = np.diag([(-1)**i for i in range(e_in-b_in)])
b_in = e_in
return elems
def zflip_tyy(lmax):
fl_yy = zflip_yy(lmax)
return np.array([fl_yy,-fl_yy])
def zflip_tyty(lmax):
fl_yy = zflip_yy(lmax)
nelem = fl_yy.shape[0]
fl_tyty = np.zeros((2,nelem,2,nelem),dtype=int)
fl_tyty[0,:,0,:] = fl_yy
fl_tyty[1,:,1,:] = -fl_yy
return fl_tyty
def zrotN_yy(N, lMax):
return WignerD_yy_fromvector(lMax, np.array([0,0,pi * (2/N)]))
def op_yy2tyty(yyop):
'''
Broadcasts an yy operator to tyty operator without considering mirroring effects.
Good (maybe only) for rotations.
'''
return np.moveaxis(np.eye(2)[:,:,ň,ň] * yyop, 2,1)
def zrotN_tyty(N, lMax):
return op_yy2tyty(zrotN_yy(N, lMax))
def parity_yy(lmax):
"""
Parity operator (flip in x,y,z)
parity = (-1)**l
"""
my, ny = get_mn_y(lmax)
return np.diag((-1)**ny)
# BTW parity (xyz-flip) is simply (-1)**ny
#----------------------------------------------------#
# Loading T-matrices from scuff-tmatrix output files #
#----------------------------------------------------#
# We don't really need this particular function anymore, but...
def _scuffTMatrixConvert_EM_01(EM):
#print(EM)
if (EM == b'E'):
return 1
elif (EM == b'M'):
return 0
else:
return None
def loadScuffTMatrices(fileName, normalisation = 1, version = 'old', freqscale = None, order = None):
"""
TODO doc
version describes version of scuff-em. It is either 'old' or 'new'.
default order is ('N','M') with 'old' version, ('M','N') with 'new'
"""
oldversion = (version == 'old')
μm = 1e-6
table = np.genfromtxt(fileName,
converters={1: _scuffTMatrixConvert_EM_01, 4: _scuffTMatrixConvert_EM_01} if oldversion else None,
skip_header = 0 if oldversion else 5,
usecols = None if oldversion else (0, 2, 3, 4, 6, 7, 8, 9, 10),
dtype=[('freq', '<f8'),
('outc_type', '<i8'), ('outc_l', '<i8'), ('outc_m', '<i8'),
('inc_type', '<i8'), ('inc_l', '<i8'), ('inc_m', '<i8'),
('Treal', '<f8'), ('Timag', '<f8')]
if oldversion else
[('freq', '<f8'),
('outc_l', '<i8'), ('outc_m', '<i8'), ('outc_type', '<i8'),
('inc_l', '<i8'), ('inc_m', '<i8'), ('inc_type', '<i8'),
('Treal', '<f8'), ('Timag', '<f8')]
)
lMax=np.max(table['outc_l'])
my,ny = get_mn_y(lMax)
nelem = len(ny)
TMatrix_sz = nelem**2 * 4 # number of rows for each frequency: nelem * nelem spherical incides, 2 * 2 E/M types
freqs_weirdunits = table['freq'][::TMatrix_sz].copy()
freqs = freqs_weirdunits * c / μm
# The iteration in the TMatrix file goes in this order (the last one iterates fastest, i.e. in the innermost loop):
# freq outc_l outc_m outc_type inc_l inc_m inc_type
# The l,m mapping is the same as is given by my get_mn_y function, so no need to touch that
TMatrices_tmp_real = table['Treal'].reshape(len(freqs), nelem, 2, nelem, 2)
TMatrices_tmp_imag = table['Timag'].reshape(len(freqs), nelem, 2, nelem, 2)
# There are two přoblems with the previous matrices. First, we want to have the
# type indices first, so we want a shape (len(freqs), 2, nelem, 2, nelem) as in the older code.
# Second, M-waves come first, so they have now 0-valued index, and E-waves have 1-valued index,
# which we want to be inverted.
TMatrices = np.zeros((len(freqs),2,nelem,2,nelem),dtype=complex)
reorder = (0,1)
if ((order == ('N', 'M')) and not oldversion): # reverse order for the new version
reorder = (1,0)
# TODO reverse order for the old version...
for inc_type in (0,1):
for outc_type in (0,1):
TMatrices[:,reorder[outc_type],:,reorder[inc_type],:] = TMatrices_tmp_real[:,:,outc_type,:,inc_type]+1j*TMatrices_tmp_imag[:,:,outc_type,:,inc_type]
# IMPORTANT: now we are going from Reid's/Kristensson's/Jackson's/whoseever convention to Taylor's convention
# TODO make these consistent with what is defined in qpms_types.h (implement all possibilities)
if normalisation == 1:
TMatrices[:,:,:,:,:] = TMatrices[:,:,:,:,:] * np.sqrt(ny*(ny+1))[ň,ň,ň,ň,:] / np.sqrt(ny*(ny+1))[ň,ň,:,ň,ň]
elif normalisation == 2: # Kristensson?
pass
if freqscale is not None:
freqs *= freqscale
freqs_weirdunits *= freqscale
return (TMatrices, freqs, freqs_weirdunits, lMax)
# misc tensor maniputalion
def apply_matrix_left(matrix, tensor, axis):
"""
TODO doc
Apply square matrix to a given axis of a tensor, so that the result retains the shape
of the original tensor. The summation goes over the second index of the matrix and the
given tensor axis.
"""
tmp = np.tensordot(matrix, tensor, axes=(-1,axis))
return np.moveaxis(tmp, 0, axis)
def apply_ndmatrix_left(matrix,tensor,axes):
"""
Generalized apply_matrix_left, the matrix can have more (2N) abstract dimensions,
like M[i,j,k,...z,i,j,k,...,z]. N axes have to be specified in a tuple, corresponding
to the axes 0,1,...N-1 of the matrix
"""
N = len(axes)
matrix = np.tensordot(matrix, tensor, axes=([-N+axn for axn in range(N)],axes))
matrix = np.moveaxis(matrix, range(N), axes)
return matrix
def apply_ndmatrix_right(tensor, matrix, axes):
"""
Right-side analogue of apply_ndmatrix_lift.
Multiplies a tensor with a 2N-dimensional matrix, conserving the axis order.
"""
N = len(axes)
matrix = np.tensordot(tensor, matrix, axes = (axes, range(N)))
matrix = np.moveaxis(matrix, [-N+axn for axn in range(N)], axes)
return matrix
def ndmatrix_Hconj(matrix):
"""
For 2N-dimensional matrix, swap the first N and last N matrix, and complex conjugate.
"""
twoN = len(matrix.shape)
if not twoN % 2 == 0:
raise ValueError("The matrix has to have even number of axes.")
N = twoN//2
matrix = np.moveaxis(matrix, range(N), range(N, 2*N))
return matrix.conj()
def symz_indexarrays(lMax, npart = 1):
"""
Returns indices that are used for separating the in-plane E ('TE' in the photonic crystal
jargon) and perpendicular E ('TM' in the photonic crystal jargon) modes
in the z-mirror symmetric systems.
Parameters
----------
lMax : int
The maximum degree cutoff for the T-matrix to which these indices will be applied.
npart : int
Number of particles (TODO better description)
Returns
-------
TEč, TMč : (npart * 2 * nelem)-shaped bool ndarray
Mask arrays corresponding to the 'TE' and 'TM' modes, respectively.
"""
my, ny = get_mn_y(lMax)
nelem = len(my)
ž = np.arange(2*nelem) # single particle spherical wave indices
= ž // nelem # tž == 0: electric waves, tž == 1: magnetic waves
= my[ž%nelem]
= ny[ž%nelem]
TEž = ž[(++) % 2 == 0]
TMž = ž[(++) % 2 == 1]
č = np.arange(npart*2*nelem) # spherical wave indices for multiple particles (e.g. in a unit cell)
žč = č % (2* nelem)
= [žč]
= [žč]
= [žč]
TEč = č[(++) % 2 == 0]
TMč = č[(++) % 2 == 1]
return (TEč, TMč)
"""
Processing T-matrix related operations from scripts
===================================================
see also scripts_common.py
The unit cell is defined by a dict particle_specs and a list TMatrix_specs.
This particular module has to provide the T-matrices according to what is defined
in TMatrix_specs
TMatrix_specs is a list of tuples (lMax_override, TMatrix_path, ops)
where
- TMatrix_path is path to the file generated by scuff-tmatrix
- lMax_override is int or None; if it is int and less than the lMax found from the T-matrix file,
lMax_override is used as the order cutoff for the output T-matrix.
- ops is an iterable of tuples (optype, opargs) where currently optype can be 'sym' or 'tr'
for symmetrization operation or some other transformation.
"""
#TODO FEATURE more basic group symmetry operations, cf. http://symmetry.otterbein.edu/tutorial/index.html
# This is for finite „fractional“ rotations along the z-axis (mCN means rotation of 2π*(m/N))
reCN = re.compile('(\d*)C(\d+)') # TODO STYLE make this regexp also accept the 3*C_5-type input, eqiv. to 3C5
def get_TMatrix_fromspec(tmatrix_spec):
''' TODO doc
returns (TMatrices, freqs, lMax)
'''
lMax_override, tmpath, ops = tmatrix_spec
TMatrices, freqs, freqs_weirdunits, lMax = loadScuffTMatrices(tmpath)
if lMax_override is not None and (lMax_override < lMax_orig):
nelem = get_nelem(lMax_override)
TMatrices = TMatrices[...,0:nelem,:,0:nelem]
lMax = lMax_override
for (optype, opargs) in ops:
if optype == 'sym':
mCN = reCN.match(opargs)
if opargs == 'C2' or opargs == 'C_2':
opmat = apply_matrix_left(yflip_yy(lMax), xflip_yy(lMax), -1)
TMatrices = (TMatrices + apply_matrix_left(opmat, apply_matrix_left(opmat, TMatrices, -3), -1))/2
elif opargs == 'σ_x' or opargs == 'σx':
opmat = xflip_tyty(lMax)
TMatrices = (TMatrices + apply_ndmatrix_left(opmat, apply_ndmatrix_left(opmat, TMatrices, (-4,-3)),(-2,-1)))/2
elif opargs == 'σ_y' or opargs == 'σy':
opmat = yflip_tyty(lMax)
TMatrices = (TMatrices + apply_ndmatrix_left(opmat, apply_ndmatrix_left(opmat, TMatrices, (-4,-3)),(-2,-1)))/2
elif opargs == 'σ_z' or opargs == 'σz':
opmat = zflip_tyty(lMax)
TMatrices = (TMatrices + apply_ndmatrix_left(opmat, apply_ndmatrix_left(opmat, TMatrices, (-4,-3)),(-2,-1)))/2
elif mCN:
rotN = int(mCN.group(2)) # the possible m is ignored
TMatrix_contribs = np.empty((rotN,)+TMatrices.shape, dtype=np.complex_)
for i in range(rotN):
rotangle = 2*np.pi*i / rotN
rot = WignerD_yy_fromvector(lMax, np.array([0,0,rotangle]))
rotinv = WignerD_yy_fromvector(lMax, np.array([0,0,-rotangle]))
TMatrix_contribs[i] = apply_matrix_left(rot, apply_matrix_left(rotinv, TMatrices, -3), -1)
TMatrices = np.sum(TMatrix_contribs, axis=0) / rotN
elif opargs == 'C_inf' or opargs == 'Cinf' or opargs == 'C_∞' or opargs == 'C∞':
raise ValueError('not implemented: ', opargs) # TODO FEATURE
else:
raise ValueError('not implemented: ', opargs)
elif optype == 'tr':
mCN = reCN.match(opargs)
if opargs == 'C2' or opargs == 'C_2':
opmat = apply_matrix_left(yflip_yy(lMax), xflip_yy(lMax), -1)
TMatrices = apply_matrix_left(opmat, apply_matrix_left(opmat, TMatrices, -3), -1)/2
elif opargs == 'σ_x' or opargs == 'σx':
opmat = xflip_tyty(lMax)
TMatrices = apply_ndmatrix_left(opmat, apply_ndmatrix_left(opmat, TMatrices, (-4,-3)),(-2,-1))/2
elif opargs == 'σ_y' or opargs == 'σy':
opmat = yflip_tyty(lMax)
TMatrices = apply_ndmatrix_left(opmat, apply_ndmatrix_left(opmat, TMatrices, (-4,-3)),(-2,-1))/2
elif opargs == 'σ_z' or opargs == 'σz':
opmat = zflip_tyty(lMax)
TMatrices = apply_ndmatrix_left(opmat, apply_ndmatrix_left(opmat, TMatrices, (-4,-3)),(-2,-1))/2
elif mCN:
rotN = int(mCN.group(2))
power = int(mCN.group(1)) if mCN.group(1) else 1
rotangle = 2*np.pi*power / rotN
rot = WignerD_yy_fromvector(lMax, np.array([0,0,rotangle]))
rotinv = WignerD_yy_fromvector(lMax, np.array([0,0,-rotangle]))
TMatrices = apply_matrix_left(rot, apply_matrix_left(rotinv, TMatrices, -3), -1)
else:
raise ValueError('not implemented: ', opargs)
else:
raise ValueError('not implemented: ', optype)
return (TMatrices, freqs, lMax)
class TMatrix(TMatrixSpec):
'''
TODO doc
TODO support for different/multiple interpolators
'''
def __init__(self, tmatrix_spec):
#self.specification = tmatrix_spec
self.lMax_override = tmatrix_spec.lMax_override
self.tmatrix_path = tmatrix_spec.tmatrix_path
self.ops = tmatrix_spec.ops
self.tmdata, self.freqs, self.lMax = get_TMatrix_fromspec(tmatrix_spec)
self.nelem = get_nelem(self.lMax)
#self._interpolators = dict()
self.default_interpolator = interpolate.interp1d(self.freqs,
self.tmdata, axis=0, kind='linear', fill_value='extrapolate')
self.normalization = NormalizationT.TAYLOR # TODO others are not supported by the loading functions
def atfreq(self, freq):
freqarray = np.array(freq, copy=False)
if freqarray.shape: # not just a scalar
tm_interp = np.empty(freqarray.shape + (2, self.nelem, 2, self.nelem), dtype=np.complex_)
for i in np.ndindex(freqarray.shape):
tm_interp[i] = self.default_interpolator(freqarray[i])
return tm_interp
else: # scalar
return self.default_interpolator(freq)
__getitem__ = atfreq # might be changed later, use atfreq to be sure
def perform_tmspecs(tmspecs):
"""Takes a sequence of TMatrixSpec or TMatrix instances and returns
a list of corresponding TMatrix instances"""
return [(tmspec if hasattr(tmspec, "tmdata") else TMatrix(tmspec))
for tmspec in tmspecs]