[dirty dipoles] cosmetics (macros for fn signatures)
Former-commit-id: 48cede61bc2ba4a63287b04de8f2c7ca825cfef5
This commit is contained in:
parent
fecdc07a37
commit
01b23dd912
|
@ -44,16 +44,13 @@ typedef complex double (*lrhankelspec)(double, double, double,
|
|||
// complex double fun(double c, double k0, double k, ccd *a, ccd *b, ccd *d, ccd *e)
|
||||
|
||||
|
||||
complex double fk5q1n0l(double c, double k0, double k,
|
||||
const complex double *a, const complex double *b, const complex double *d, const complex double *e, const complex double *ash) {
|
||||
LRHANKELDEF(fk5q1n0l){
|
||||
return (FF*e[0]-5*e[1]+10*e[2]-10*e[3]+5*e[4]-e[5])/k0;
|
||||
}
|
||||
complex double fk5q1n1l(double c, double k0, double k,
|
||||
const complex double *a, const complex double *b, const complex double *d, const complex double *e, const complex double *ash) {
|
||||
LRHANKELDEF(fk5q1n1l){
|
||||
return (-FF*d[0]+5*d[1]-10*d[2]+10*d[3]-5*d[4]+d[5])/(k0*k);
|
||||
}
|
||||
complex double fk5q1n2l(double c, double k0, double k,
|
||||
const complex double *a, const complex double *b, const complex double *d, const complex double *e, const complex double *ash) {
|
||||
LRHANKELDEF(fk5q1n2l){
|
||||
double t = 2/(k*k);
|
||||
return ( (FF*e[0] - t*a[0] + FF*t*d[0]*a[0])
|
||||
-5 * (e[1] - t*a[1] + t*d[1]*a[1])
|
||||
|
@ -63,8 +60,7 @@ complex double fk5q1n2l(double c, double k0, double k,
|
|||
- (e[5] - t*a[5] + t*d[5]*a[5])
|
||||
)/k0;
|
||||
}
|
||||
complex double fk5q1n3l(double c, double k0, double k,
|
||||
const complex double *a, const complex double *b, const complex double *d, const complex double *e, const complex double *ash) {
|
||||
LRHANKELDEF(fk5q1n3l){
|
||||
double kk3 = 3*k*k;
|
||||
return (
|
||||
- FF*d[0]*(kk3+4*a[0]*a[0])
|
||||
|
@ -75,8 +71,7 @@ complex double fk5q1n3l(double c, double k0, double k,
|
|||
+ d[5]*(kk3+4*a[5]*a[5])
|
||||
)/(k0*k*k*k);
|
||||
}
|
||||
complex double fk5q1n4l(double c, double k0, double k,
|
||||
const complex double *a, const complex double *b, const complex double *d, const complex double *e, const complex double *ash) {
|
||||
LRHANKELDEF(fk5q1n4l){
|
||||
double kk8 = k*k*8, kkkk = P4(k); // Není lepší pow?
|
||||
return (
|
||||
+ FF*e[0]*(kkkk + kk8*a[0]*a[0] + 8*P4(a[0]))
|
||||
|
@ -104,8 +99,7 @@ LRHANKELDEF(fk5q1n5s){
|
|||
#undef FORMK5Q1N5
|
||||
|
||||
|
||||
complex double fk5q2n0(double c, double k0, double k,
|
||||
const complex double *a, const complex double *b, const complex double *d, const complex double *e, const complex double *ash) {
|
||||
LRHANKELDEF(fk5q2n0){
|
||||
return (
|
||||
- ash[0]
|
||||
+ 5 * ash[1]
|
||||
|
@ -115,8 +109,7 @@ complex double fk5q2n0(double c, double k0, double k,
|
|||
+ ash[5]
|
||||
) / (k0*k0);
|
||||
}
|
||||
complex double fk5q2n1l(double c, double k0, double k,
|
||||
const complex double *a, const complex double *b, const complex double *d, const complex double *e, const complex double *ash) {
|
||||
LRHANKELDEF(fk5q2n1l){
|
||||
return ( FF *b[0]*a[0]
|
||||
- 5 *b[1]*a[1]
|
||||
+10 *b[2]*a[2]
|
||||
|
@ -125,8 +118,7 @@ complex double fk5q2n1l(double c, double k0, double k,
|
|||
- b[5]*a[5]
|
||||
)/(k*k0*k0);
|
||||
}
|
||||
complex double fk5q2n2l(double c, double k0, double k,
|
||||
const complex double *a, const complex double *b, const complex double *d, const complex double *e, const complex double *ash) {
|
||||
LRHANKELDEF(fk5q2n2l){
|
||||
return ( b[0]*a[0]*a[0]
|
||||
+ 5 * b[1]*a[1]*a[1]
|
||||
-10 * b[2]*a[2]*a[2]
|
||||
|
@ -150,16 +142,13 @@ complex double fk5q3n0l(double c, double k0, double k,
|
|||
}
|
||||
#endif
|
||||
|
||||
complex double fk5q1n0s(double c, double k0, double k,
|
||||
const complex double *a, const complex double *b, const complex double *d, const complex double *e, const complex double *ash) {
|
||||
LRHANKELDEF(fk5q1n0s){
|
||||
return (e[0]-5*e[1]+10*e[2]-10*e[3]+5*e[4]-e[5])/k0;
|
||||
}
|
||||
complex double fk5q1n1s(double c, double k0, double k,
|
||||
const complex double *a, const complex double *b, const complex double *d, const complex double *e, const complex double *ash) {
|
||||
LRHANKELDEF(fk5q1n1s){
|
||||
return (-d[0]+5*d[1]-10*d[2]+10*d[3]-5*d[4]+d[5])/(k0*k);
|
||||
}
|
||||
complex double fk5q1n2s(double c, double k0, double k,
|
||||
const complex double *a, const complex double *b, const complex double *d, const complex double *e, const complex double *ash) {
|
||||
LRHANKELDEF(fk5q1n2s){
|
||||
double t = 2/(k*k);
|
||||
return ( (e[0] - t*a[0] + t*d[0]*a[0])
|
||||
-5 * (e[1] - t*a[1] + t*d[1]*a[1])
|
||||
|
@ -170,8 +159,7 @@ complex double fk5q1n2s(double c, double k0, double k,
|
|||
)/k0;
|
||||
}
|
||||
|
||||
complex double fk5q1n3s(double c, double k0, double k,
|
||||
const complex double *a, const complex double *b, const complex double *d, const complex double *e, const complex double *ash) {
|
||||
LRHANKELDEF(fk5q1n3s){
|
||||
double kk3 = 3*k*k;
|
||||
return (
|
||||
- d[0]*(kk3+4*a[0]*a[0])
|
||||
|
@ -182,8 +170,7 @@ complex double fk5q1n3s(double c, double k0, double k,
|
|||
+ d[5]*(kk3+4*a[5]*a[5])
|
||||
)/(k0*k*k*k);
|
||||
}
|
||||
complex double fk5q1n4s(double c, double k0, double k,
|
||||
const complex double *a, const complex double *b, const complex double *d, const complex double *e, const complex double *ash) {
|
||||
LRHANKELDEF(fk5q1n4s){
|
||||
double kk8 = k*k*8, kkkk = P4(k); // Není lepší pow?
|
||||
return (
|
||||
+ e[0]*(kkkk + kk8*a[0]*a[0] + 8*P4(a[0]))
|
||||
|
@ -197,8 +184,7 @@ complex double fk5q1n4s(double c, double k0, double k,
|
|||
|
||||
const lrhankelspec fk5q2n0s = fk5q2n0, fk5q2n0l = fk5q2n0;
|
||||
|
||||
complex double fk5q2n1s(double c, double k0, double k,
|
||||
const complex double *a, const complex double *b, const complex double *d, const complex double *e, const complex double *ash) {
|
||||
LRHANKELDEF(fk5q2n1s){
|
||||
return ( FF *b[0]*a[0]
|
||||
- 5 *b[1]*a[1]
|
||||
+10 *b[2]*a[2]
|
||||
|
@ -207,8 +193,7 @@ complex double fk5q2n1s(double c, double k0, double k,
|
|||
- b[5]*a[5]
|
||||
)/(k*k0*k0);
|
||||
}
|
||||
complex double fk5q2n2s(double c, double k0, double k,
|
||||
const complex double *a, const complex double *b, const complex double *d, const complex double *e, const complex double *ash) {
|
||||
LRHANKELDEF(fk5q2n2s){
|
||||
return ( FF * b[0]*a[0]*a[0]
|
||||
+ 5 * b[1]*a[1]*a[1]
|
||||
-10 * b[2]*a[2]*a[2]
|
||||
|
@ -301,6 +286,7 @@ void lrhankel_recpart_fill(complex double *target,
|
|||
}
|
||||
}
|
||||
|
||||
#ifdef TESTING
|
||||
#include <stdio.h>
|
||||
int main() {
|
||||
double k0 = 0.7;
|
||||
|
@ -325,11 +311,11 @@ int main() {
|
|||
//if (/*!*/((qm==1)&&(n==0))){ // not skip q==2, n=0 for now
|
||||
// complex double fun(double c, double k0, double k, ccd *a, ccd *b, ccd *d, ccd *e)
|
||||
complex double result =
|
||||
//transfuns_f[kappa][qm][n](c,k0,k,a,b,d,e,ash);
|
||||
fk5q2n5l(c,k0,k,a,b,d,e,ash);
|
||||
(k < k0 ? transfuns_n : transfuns_f)[kappa][qm][n](c,k0,k,a,b,d,e,ash);
|
||||
printf("%.16e %.16e ", creal(result), cimag(result));
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
|
Loading…
Reference in New Issue