Fix the integrand for axially symmetric T-matrices.

Forgotten jacobian, FFS.


Former-commit-id: f9a409bd1f5af78bb460d4bd3a9aadf78cebc2a7
This commit is contained in:
Marek Nečada 2019-08-16 10:05:23 +03:00
parent 5e2dcf2100
commit 03188d43f7
4 changed files with 44 additions and 3 deletions

View File

@ -105,7 +105,7 @@ cdef class EpsMuGenerator:
self.g.function = qpms_permittivity_interpolator_epsmu_g
self.g.params = (<MaterialInterpolator?>self.holder).rawpointer()
elif isinstance(what, EpsMuGenerator): # Copy constructor
self.holder = what.holder
self.holder = (<EpsMuGenerator?>what).holder
self.g = (<EpsMuGenerator?>what).g
elif callable(what):
warnings.warn("Custom python (eps,mu) generators are an experimental feature")

View File

@ -1,5 +1,4 @@
"""@package qpms_c
self.s.norm = <qpms_normalisation_t>(QPMS_NORMALISATION_NORM_POWER | QPMS_NORMALISATION_CSPHASE)
Cythonized parts of QPMS; mostly wrappers over the C data structures
to make them available in Python.
"""

View File

@ -687,7 +687,7 @@ static double tmatrix_axialsym_integrand(double theta, void *param) {
complex double tp2 = nrc * (y2.thetac * v_in2.phic - y2.phic * v_in2.thetac)
+ nthetac * (y2.phic * v_in2.rc - y2.rc * v_in2.phic);
double jac = SQ(rb.r) * sin(theta) / nrc; // Jacobian
complex double res = p->z/p->z_in * tp1 + tp2;
complex double res = jac * (p->z/p->z_in * tp1 + tp2);
return p->realpart ? creal(res) : cimag(res);
}

View File

@ -0,0 +1,42 @@
from qpms import *
import numpy as np
R = 40e-9
lMax = 2
ω = 1.5*eV/
spec = BaseSpec(lMax = lMax)
inside = EpsMuGenerator(lorentz_drude['Au'])
outside = EpsMuGenerator(EpsMu(2.3104,1))
gensphere_arc = TMatrixGenerator.sphere_asarc(outside=outside, inside=inside, r=R, lMax_extend=lMax)
np.set_printoptions(precision=3, suppress=True,linewidth=1000)
QT = gensphere_arc.Q_transposed(ω, spec.norm)
RT = gensphere_arc.R_transposed(ω, spec.norm)
T = gensphere_arc(spec,ω)
QT_corrected = np.array(QT)
RT_corrected = np.array(RT)
QT_corrected[8:,:8] = 0
QT_corrected[:8,8:] = 0
RT_corrected[8:,:8] = 0
RT_corrected[:8,8:] = 0
T_corrected = np.dot(np.linalg.inv(QT_corrected), RT_corrected)
print("QT:")
print(QT)
print("RT:")
print(RT)
print("T:")
print(T[:])
print("T_corrected:")
print(T_corrected)