T-matrix for axially symmetric particles; untested
Former-commit-id: dfc7a0771a52df097a2afba172bb286369f085a2
This commit is contained in:
parent
f5288318bf
commit
053c4c0b57
|
@ -131,9 +131,9 @@ where
|
|||
|
||||
refers to the particle inside; then
|
||||
\begin_inset Formula
|
||||
\[
|
||||
T_{nn'}=-\sum_{n''}R_{nn''}Q_{n''n}^{-1}.
|
||||
\]
|
||||
\begin{equation}
|
||||
T_{nn'}=-\sum_{n''}R_{nn''}Q_{n''n}^{-1}.\label{eq:T matrix from R and Q}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
@ -196,6 +196,52 @@ For fully axially symmetric particles the integrals vanish for
|
|||
\end_inset
|
||||
|
||||
asimuthal factor in the integrand.
|
||||
One then has
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
T_{nn'}=-\sum_{n''}R'_{nn''}Q'_{n''n}^{-1}\label{eq:T-matrix from reduced R and Q}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
R'_{nn'} & =\int_{0}^{\pi}\left(\frac{\eta}{\eta_{1}}\wfkcreg_{n}\left(k\vect r\right)\times\wfkcreg_{\overline{n'}}\left(k_{1}\vect r\right)+\wfkcreg_{\overline{n}}\left(k\vect r\right)\times\wfkcreg_{n'}\left(k_{1}\vect r\right)\right)\cdot\left(\uvec r\cos\beta\left(\theta\right)+\uvec{\theta}\sin\beta\left(\theta\right)\right)\frac{\left(r\left(\theta\right)\right)^{2}\sin\theta}{\cos\beta\left(\theta\right)}\ud\theta,\\
|
||||
Q'_{nn'} & =\int_{0}^{\pi}\left(\frac{\eta}{\eta_{1}}\wfkcreg_{n}\left(k\vect r\right)\times\wfkcreg_{\overline{n'}}\left(k_{1}\vect r\right)+\wfkcreg_{\overline{n}}\left(k\vect r\right)\times\wfkcreg_{n'}\left(k_{1}\vect r\right)\right)\cdot\left(\uvec r\cos\beta\left(\theta\right)+\uvec{\theta}\sin\beta\left(\theta\right)\right)\frac{\left(r\left(\theta\right)\right)^{2}\sin\theta}{\cos\beta\left(\theta\right)}\ud\theta
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $\vect r=\vect r\left(\theta\right)=\left(r\left(\theta\right),\theta,0\right)$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Matrices
|
||||
\begin_inset Formula $Q',R'$
|
||||
\end_inset
|
||||
|
||||
differ from the original
|
||||
\begin_inset Formula $R,Q$
|
||||
\end_inset
|
||||
|
||||
matrices in
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:T matrix from R and Q"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
by a factor of
|
||||
\begin_inset Formula $2\pi ik^{2}$
|
||||
\end_inset
|
||||
|
||||
, but this cancels out in the matrix product.
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
|
149
qpms/tmatrices.c
149
qpms/tmatrices.c
|
@ -1,4 +1,9 @@
|
|||
#define _POSIX_C_SOURCE 200809L // for getline()
|
||||
#define lapack_int int
|
||||
#define lapack_complex_double complex double
|
||||
#define lapack_complex_double_real(z) (creal(z))
|
||||
#define lapack_complex_double_imag(z) (cimag(z))
|
||||
#include <lapacke.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <cblas.h>
|
||||
|
@ -18,12 +23,19 @@
|
|||
#include "qpms_specfunc.h"
|
||||
#include "normalisation.h"
|
||||
#include <errno.h>
|
||||
#include <gsl/gsl_integration.h>
|
||||
|
||||
// These are quite arbitrarily chosen constants for the quadrature in qpms_tmatrix_axialsym_fill()
|
||||
#define TMATRIX_AXIALSYM_INTEGRAL_EPSREL (1e-6)
|
||||
#define TMATRIX_AXIALSYM_INTEGRAL_EPSABS (1e-10)
|
||||
|
||||
#define HBAR (1.05457162825e-34)
|
||||
#define ELECTRONVOLT (1.602176487e-19)
|
||||
#define SCUFF_OMEGAUNIT (3e14)
|
||||
|
||||
#define SQ(x) ((x)*(x))
|
||||
#define MAX(x,y) ((x) < (y) ? (y) : (x))
|
||||
|
||||
qpms_tmatrix_t *qpms_tmatrix_init(const qpms_vswf_set_spec_t *bspec) {
|
||||
qpms_tmatrix_t *t = malloc(sizeof(qpms_tmatrix_t));
|
||||
if (!t) abort();
|
||||
|
@ -612,27 +624,148 @@ qpms_arc_function_retval_t qpms_arc_cylinder(double theta, const void *param) {
|
|||
|
||||
struct tmatrix_axialsym_integral_param_t {
|
||||
const qpms_vswf_set_spec_t *bspec;
|
||||
qpms_l_t l1, l2;
|
||||
qpms_m_t m1; // m2 = -m1
|
||||
qpms_vswf_type_t t1; // t2 = 2 - t1
|
||||
qpms_l_t l, l_in;
|
||||
qpms_m_t m; // m_in = -m
|
||||
qpms_vswf_type_t t, t_in;
|
||||
qpms_arc_function_t f;
|
||||
complex double k_in, k, z_in, z;
|
||||
bool realpart; // Otherwise imaginary part
|
||||
bool Q; // Otherwise R
|
||||
qpms_bessel_t btype; // For Q QPMS_HANKEL_PLUS, for R QPMS_BESSEL_REGULAR
|
||||
};
|
||||
|
||||
#if 0
|
||||
static double tmatrix_axialsym_integrand(double theta, void *param) {
|
||||
// Pretty inefficient; either real or imaginary part is thrown away etc.
|
||||
struct tmatrix_axialsym_integral_param_t *p = param;
|
||||
qpms_arc_function_retval_t rb = p->f.function(theta, p->f.params);
|
||||
csph_t kr = {rb.r * p->k, theta, 0},
|
||||
kr_in = {rb.r * p->k_in, theta, 0};
|
||||
|
||||
csphvec_t y_el = qpms_vswf_single_el_csph(p->m, p->l, kr, p->btype, p->bspec->norm);
|
||||
csphvec_t y_mg = qpms_vswf_single_mg_csph(p->m, p->l, kr, p->btype, p->bspec->norm);
|
||||
csphvec_t v_in_el = qpms_vswf_single_el_csph(-p->m, p->l_in, kr_in, QPMS_BESSEL_REGULAR, p->bspec->norm);
|
||||
csphvec_t v_in_mg = qpms_vswf_single_mg_csph(-p->m, p->l_in, kr_in, QPMS_BESSEL_REGULAR, p->bspec->norm);
|
||||
csphvec_t y1, y2, v_in1, v_in2;
|
||||
switch(p->t) {
|
||||
case QPMS_VSWF_ELECTRIC: y1 = y_el; y2 = y_mg; break;
|
||||
case QPMS_VSWF_MAGNETIC: y1 = y_mg; y2 = y_el; break;
|
||||
default: QPMS_WTF;
|
||||
}
|
||||
switch(p->t_in) {
|
||||
case QPMS_VSWF_ELECTRIC: v_in1 = v_in_mg; v_in2 = v_in_el; break;
|
||||
case QPMS_VSWF_MAGNETIC: v_in1 = v_in_el; v_in2 = v_in_mg; break;
|
||||
default: QPMS_WTF;
|
||||
}
|
||||
// Normal vector components
|
||||
double nrc = cos(rb.beta), nthetac = sin(rb.beta);
|
||||
// First triple product
|
||||
complex double tp1 = nrc * (y1.thetac * v_in1.phic - y1.phic * v_in1.thetac)
|
||||
+ nthetac * (y1.phic * v_in1.rc - y1.rc * v_in1.phic);
|
||||
// Second thiple product
|
||||
complex double tp2 = nrc * (y2.thetac * v_in2.phic - y2.phic * v_in2.thetac)
|
||||
+ nthetac * (y2.phic * v_in2.rc - y2.rc * v_in2.phic);
|
||||
double jac = SQ(rb.r) * sin(theta) / nrc; // Jacobian
|
||||
complex double res = p->z/p->z_in * tp1 + tp2;
|
||||
return p->realpart ? creal(res) : cimag(res);
|
||||
}
|
||||
|
||||
qpms_errno_t qpms_tmatrix_axialsym_fill(
|
||||
qpms_tmatrix_t *t, complex double omega, qpms_epsmu_generator_t outside,
|
||||
qpms_epsmu_generator_t inside,qpms_arc_function_t shape)
|
||||
qpms_tmatrix_t *t, complex double omega, qpms_epsmu_t outside,
|
||||
qpms_epsmu_t inside,qpms_arc_function_t shape, qpms_l_t lMaxQR)
|
||||
{
|
||||
QPMS_UNTESTED;
|
||||
const qpms_vswf_set_spec_t *bspec = t->spec;
|
||||
struct tmatrix_axialsym_integral_param_t p;
|
||||
p.k = qpms_wavenumber(omega, outside);
|
||||
p.k_in = qpms_wavenumber(omega, inside);
|
||||
p.z = qpms_waveimpedance(outside);
|
||||
p.z_in = qpms_waveimpedance(inside);
|
||||
p.f = shape;
|
||||
const gsl_function f = {tmatrix_axialsym_integrand, (void *) &p};
|
||||
|
||||
if (lMaxQR < bspec->lMax) lMaxQR = bspec->lMax;
|
||||
qpms_vswf_set_spec_t *bspecQR = qpms_vswf_set_spec_from_lMax(lMaxQR, bspec->norm);
|
||||
size_t *reindex = qpms_vswf_set_reindex(bspec, bspecQR);
|
||||
|
||||
// Q' and R' matrices
|
||||
complex double *Q, *R;
|
||||
QPMS_CRASHING_MALLOC(Q, sizeof(complex double) * SQ(bspecQR->n));
|
||||
QPMS_CRASHING_MALLOC(R, sizeof(complex double) * SQ(bspecQR->n));
|
||||
|
||||
// Not sure what the size should be, but this should be more than enough.
|
||||
const size_t intlimit = 1024;
|
||||
const double epsrel = TMATRIX_AXIALSYM_INTEGRAL_EPSREL;
|
||||
const double epsabs = TMATRIX_AXIALSYM_INTEGRAL_EPSABS;
|
||||
gsl_integration_workspace *w = gsl_integration_workspace_alloc(intlimit);
|
||||
for(size_t i1 = 0; i1 < bspecQR->n; ++i1)
|
||||
for(size_t i2 = 0; i2 < bspecQR->n; ++i2) {
|
||||
// NOTE that the Q', R' matrices are !TRANSPOSED! here because of zgetrs
|
||||
const size_t iQR = i1 + i2 * bspecQR->n;
|
||||
qpms_m_t m1, m2;
|
||||
qpms_l_t l1, l2;
|
||||
qpms_vswf_type_t t1, t2;
|
||||
const qpms_uvswfi_t u1 = bspecQR->ilist[i1], u2 = bspecQR->ilist[i2];
|
||||
QPMS_ENSURE_SUCCESS(qpms_uvswfi2tmn(u1, &t1, &m1, &l1));
|
||||
QPMS_ENSURE_SUCCESS(qpms_uvswfi2tmn(u2, &t2, &m2, &l2));
|
||||
if (m1 + m2) {
|
||||
Q[iQR] = 0;
|
||||
R[iQR] = 0;
|
||||
} else {
|
||||
p.m = m1;
|
||||
p.l = l1; p.l_in = l2;
|
||||
p.t = t1; p.t_in = t2;
|
||||
|
||||
double result; // We throw the quadrature error estimate away.
|
||||
// Re(R')
|
||||
p.btype = QPMS_BESSEL_REGULAR;
|
||||
p.realpart = true;
|
||||
QPMS_ENSURE_SUCCESS(gsl_integration_qag(&f, 0, M_PI, epsabs, epsrel,
|
||||
intlimit, 2, w, &result, NULL));
|
||||
R[iQR] = result;
|
||||
|
||||
// Im(R')
|
||||
p.realpart = false;
|
||||
QPMS_ENSURE_SUCCESS(gsl_integration_qag(&f, 0, M_PI, epsabs, epsrel,
|
||||
intlimit, 2, w, &result, NULL));
|
||||
R[iQR] += I*result;
|
||||
|
||||
// Re(Q')
|
||||
p.btype = QPMS_HANKEL_PLUS;
|
||||
p.realpart = true;
|
||||
QPMS_ENSURE_SUCCESS(gsl_integration_qag(&f, 0, M_PI, epsabs, epsrel,
|
||||
intlimit, 2, w, &result, NULL));
|
||||
Q[iQR] = result;
|
||||
|
||||
// Im(Q')
|
||||
p.realpart = false;
|
||||
QPMS_ENSURE_SUCCESS(gsl_integration_qag(&f, 0, M_PI, epsabs, epsrel,
|
||||
intlimit, 2, w, &result, NULL));
|
||||
Q[iQR] += I*result;
|
||||
}
|
||||
}
|
||||
gsl_integration_workspace_free(w);
|
||||
|
||||
// Compute T-matrix; maybe it would be better solved with some sparse matrix mechanism,
|
||||
// but fukkit.
|
||||
const size_t n = bspecQR->n;
|
||||
lapack_int *pivot;
|
||||
QPMS_CRASHING_MALLOC(pivot, sizeof(lapack_int) * n);
|
||||
QPMS_ENSURE_SUCCESS(LAPACKE_zgetrf(LAPACK_ROW_MAJOR, n, n, Q, n, pivot));
|
||||
// Solve Q'^T X = R'^T where X will be -T^T
|
||||
// Note that Q'^T, R'^T are already (transposed) in Q, R.
|
||||
const complex double minus1 = -1;
|
||||
QPMS_ENSURE_SUCCESS(LAPACKE_zgetrs(LAPACK_ROW_MAJOR, 'N', n, n /*nrhs*/,
|
||||
Q, n, pivot, R, n));
|
||||
// R now contains -T^T.
|
||||
for(size_t i1 = 0; i1 < bspec->n; ++i1)
|
||||
for(size_t i2 = 0; i2 < bspec->n; ++i2) {
|
||||
if (reindex[i1] == ~(size_t) 0 && reindex[i2] == ~(size_t) 0) QPMS_WTF;
|
||||
const size_t it = i1 * bspec->n + i2;
|
||||
const size_t iQR = reindex[i1] + reindex[i2] * bspecQR->n;
|
||||
t->m[it] = -R[iQR];
|
||||
}
|
||||
|
||||
free(pivot); free(R); free(Q); free(reindex);
|
||||
qpms_vswf_set_spec_free(bspecQR);
|
||||
return QPMS_SUCCESS;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -392,21 +392,32 @@ qpms_arc_function_retval_t qpms_arc_sphere(double theta,
|
|||
qpms_errno_t qpms_tmatrix_axialsym_fill(
|
||||
qpms_tmatrix_t *t, ///< T-matrix whose contents are to be replaced. Not NULL.
|
||||
complex double omega, ///< Angular frequency.
|
||||
qpms_epsmu_generator_t outside, ///< Optical properties of the outside medium.
|
||||
qpms_epsmu_generator_t inside, ///< Optical properties of the particle's material.
|
||||
qpms_arc_function_t shape ///< Particle surface parametrisation.
|
||||
qpms_epsmu_t outside, ///< Optical properties of the outside medium.
|
||||
qpms_epsmu_t inside, ///< Optical properties of the particle's material.
|
||||
qpms_arc_function_t shape, ///< Particle surface parametrisation.
|
||||
/** If `lMax_extend > t->bspec->lMax`, then the internal \a Q, \a R matrices will be
|
||||
* trimmed at this larger lMax; the final T-matrix will then be trimmed
|
||||
* according to bspec.
|
||||
*/
|
||||
qpms_l_t lMax_extend
|
||||
);
|
||||
|
||||
/// Creates a new T-matrix of a particle with \f$ C_\infty \f$ symmetry.
|
||||
static inline qpms_tmatrix_t *qpms_tmatrix_axialsym(
|
||||
const qpms_vswf_set_spec_t *bspec,
|
||||
complex double omega, ///< Angular frequency.
|
||||
qpms_epsmu_generator_t outside, ///< Optical properties of the outside medium.
|
||||
qpms_epsmu_generator_t inside, ///< Optical properties of the particle's material.
|
||||
qpms_arc_function_t shape ///< Particle surface parametrisation.
|
||||
qpms_epsmu_t outside, ///< Optical properties of the outside medium.
|
||||
qpms_epsmu_t inside, ///< Optical properties of the particle's material.
|
||||
qpms_arc_function_t shape, ///< Particle surface parametrisation.
|
||||
/// Internal lMax to improve precision of the result.
|
||||
/** If `lMax_extend > bspec->lMax`, then the internal \a Q, \a R matrices will be
|
||||
* trimmed at this larger lMax; the final T-matrix will then be trimmed
|
||||
* according to bspec.
|
||||
*/
|
||||
qpms_l_t lMax_extend
|
||||
) {
|
||||
qpms_tmatrix_t *t = qpms_tmatrix_init(bspec);
|
||||
qpms_tmatrix_axialsym_fill(t, omega, outside, inside, shape);
|
||||
qpms_tmatrix_axialsym_fill(t, omega, outside, inside, shape, lMax_extend);
|
||||
return t;
|
||||
}
|
||||
|
||||
|
|
59
qpms/vswf.c
59
qpms/vswf.c
|
@ -95,7 +95,52 @@ void qpms_vswf_set_spec_free(qpms_vswf_set_spec_t *s) {
|
|||
free(s);
|
||||
}
|
||||
|
||||
csphvec_t qpms_vswf_single_el(qpms_m_t m, qpms_l_t l, sph_t kdlj,
|
||||
struct bspec_reindex_pair {
|
||||
qpms_uvswfi_t ui;
|
||||
size_t i_orig;
|
||||
};
|
||||
|
||||
static int cmp_bspec_reindex_pair(const void *aa, const void *bb) {
|
||||
const struct bspec_reindex_pair *a = aa, *b = bb;
|
||||
if (a->ui < b->ui) return -1;
|
||||
else if (a->ui == b->ui) return 0;
|
||||
else return 1;
|
||||
}
|
||||
|
||||
size_t *qpms_vswf_set_reindex(const qpms_vswf_set_spec_t *small, const qpms_vswf_set_spec_t *big) {
|
||||
QPMS_UNTESTED;
|
||||
struct bspec_reindex_pair *small_pairs, *big_pairs;
|
||||
size_t *r;
|
||||
QPMS_CRASHING_MALLOC(small_pairs, sizeof(struct bspec_reindex_pair) * small->n);
|
||||
QPMS_CRASHING_MALLOC(big_pairs, sizeof(struct bspec_reindex_pair) * big->n);
|
||||
QPMS_CRASHING_MALLOC(r, sizeof(size_t) * small->n);
|
||||
for(size_t i = 0; i < small->n; ++i) {
|
||||
small_pairs[i].ui = small->ilist[i];
|
||||
small_pairs[i].i_orig = i;
|
||||
}
|
||||
for(size_t i = 0 ; i < big->n; ++i) {
|
||||
big_pairs[i].ui = big->ilist[i];
|
||||
big_pairs[i].i_orig = i;
|
||||
}
|
||||
qsort(small_pairs, small->n, sizeof(struct bspec_reindex_pair), cmp_bspec_reindex_pair);
|
||||
qsort(big_pairs, big->n, sizeof(struct bspec_reindex_pair), cmp_bspec_reindex_pair);
|
||||
|
||||
size_t bi = 0;
|
||||
for(size_t si = 0; si < small->n; ++si) {
|
||||
while(big_pairs[bi].ui < small_pairs[si].ui)
|
||||
++bi;
|
||||
if(big_pairs[bi].ui == small_pairs[si].ui)
|
||||
r[small_pairs[si].i_orig] = big_pairs[si].i_orig;
|
||||
else
|
||||
r[small_pairs[si].i_orig] = ~(size_t)0;
|
||||
}
|
||||
|
||||
free(small_pairs);
|
||||
free(big_pairs);
|
||||
return r;
|
||||
}
|
||||
|
||||
csphvec_t qpms_vswf_single_el_csph(qpms_m_t m, qpms_l_t l, csph_t kdlj,
|
||||
qpms_bessel_t btyp, qpms_normalisation_t norm) {
|
||||
lmcheck(l,m);
|
||||
csphvec_t N;
|
||||
|
@ -120,7 +165,7 @@ csphvec_t qpms_vswf_single_el(qpms_m_t m, qpms_l_t l, sph_t kdlj,
|
|||
return N;
|
||||
}
|
||||
|
||||
csphvec_t qpms_vswf_single_mg(qpms_m_t m, qpms_l_t l, sph_t kdlj,
|
||||
csphvec_t qpms_vswf_single_mg_csph(qpms_m_t m, qpms_l_t l, csph_t kdlj,
|
||||
qpms_bessel_t btyp, qpms_normalisation_t norm) {
|
||||
lmcheck(l,m);
|
||||
csphvec_t M;
|
||||
|
@ -143,6 +188,16 @@ csphvec_t qpms_vswf_single_mg(qpms_m_t m, qpms_l_t l, sph_t kdlj,
|
|||
return M;
|
||||
}
|
||||
|
||||
csphvec_t qpms_vswf_single_el(qpms_m_t m, qpms_l_t l, sph_t kdlj,
|
||||
qpms_bessel_t btyp, qpms_normalisation_t norm) {
|
||||
return qpms_vswf_single_el_csph(m, l, sph2csph(kdlj), btyp, norm);
|
||||
}
|
||||
|
||||
csphvec_t qpms_vswf_single_mg(qpms_m_t m, qpms_l_t l, sph_t kdlj,
|
||||
qpms_bessel_t btyp, qpms_normalisation_t norm) {
|
||||
return qpms_vswf_single_mg_csph(m, l, sph2csph(kdlj), btyp, norm);
|
||||
}
|
||||
|
||||
qpms_vswfset_sph_t *qpms_vswfset_make(qpms_l_t lMax, sph_t kdlj,
|
||||
qpms_bessel_t btyp, qpms_normalisation_t norm) {
|
||||
qpms_vswfset_sph_t *res = malloc(sizeof(qpms_vswfset_sph_t));
|
||||
|
|
21
qpms/vswf.h
21
qpms/vswf.h
|
@ -23,7 +23,7 @@ typedef qpms_errno_t (*qpms_incfield_t)(
|
|||
bool add ///< If true, add to target; rewrite target if false.
|
||||
);
|
||||
|
||||
// ---------------Methods for qpms_vswf_spec_t-----------------------
|
||||
// ---------------Methods for qpms_vswf_set_spec_t-----------------------
|
||||
//
|
||||
/// Creates a qpms_vswf_set_spec_t structure with an empty list of wave indices.
|
||||
qpms_vswf_set_spec_t *qpms_vswf_set_spec_init(void);
|
||||
|
@ -55,6 +55,19 @@ static inline ssize_t qpms_vswf_set_spec_find_uvswfi(const qpms_vswf_set_spec_t
|
|||
return -1;
|
||||
}
|
||||
|
||||
/// Creates an index mapping between two bspecs.
|
||||
/**
|
||||
* Creates an array r such that small->ilist[i] == big->ilist[r[i]].
|
||||
* It's not lossless if the two bspecs contain different combinations of waves.
|
||||
*
|
||||
* Preferably, big->ilist contains everything small->ilist does.
|
||||
* If small->ilist[i] is not found in big->ilist, r[i] will be set to ~(size_t)0.
|
||||
*
|
||||
* Discard with free() after use.
|
||||
*/
|
||||
size_t *qpms_vswf_set_reindex(const qpms_vswf_set_spec_t *small, const qpms_vswf_set_spec_t *big);
|
||||
|
||||
|
||||
/// Evaluates a set of VSWF basis functions at a given point.
|
||||
/** The list of basis wave indices is specified in \a setspec;
|
||||
* \a setspec->norm must be set as well.
|
||||
|
@ -120,6 +133,12 @@ csphvec_t qpms_vswf_single_el(int m, int n, sph_t kdlj,
|
|||
/// Magnetic wave M.
|
||||
csphvec_t qpms_vswf_single_mg(int m, int n, sph_t kdlj,
|
||||
qpms_bessel_t btyp, qpms_normalisation_t norm);
|
||||
/// Electric wave N, complex wave number version.
|
||||
csphvec_t qpms_vswf_single_el_csph(int m, int n, csph_t kdlj,
|
||||
qpms_bessel_t btyp, qpms_normalisation_t norm);
|
||||
/// Magnetic wave M, complex wave number version..
|
||||
csphvec_t qpms_vswf_single_mg_csph(int m, int n, csph_t kdlj,
|
||||
qpms_bessel_t btyp, qpms_normalisation_t norm);
|
||||
|
||||
/// Set of electric and magnetic VSWF values in spherical coordinate basis.
|
||||
/** This is supposed to contain all the waves up to $l = lMax$.
|
||||
|
|
Loading…
Reference in New Issue