Review of the finite multiple scattering group action part.
Former-commit-id: ad6e51190c52daa35522daa7654937f642161f60
This commit is contained in:
parent
306cb1bef8
commit
055ad7a1be
|
@ -399,6 +399,11 @@ status open
|
|||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\groupop}[1]{\hat{P}_{#1}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
|
|
@ -203,8 +203,8 @@ Let
|
|||
\begin_inset Formula $g$
|
||||
\end_inset
|
||||
|
||||
be a member of orthogonal group
|
||||
\begin_inset Formula $O(3)$
|
||||
be a member of the orthogonal group
|
||||
\begin_inset Formula $\mathrm{O}(3)$
|
||||
\end_inset
|
||||
|
||||
, i.e.
|
||||
|
@ -225,16 +225,45 @@ Let
|
|||
|
||||
\end_inset
|
||||
|
||||
With
|
||||
\begin_inset Formula $\groupop g$
|
||||
\end_inset
|
||||
|
||||
we shall denote the action of
|
||||
\begin_inset Formula $g$
|
||||
\end_inset
|
||||
|
||||
on a field in real space.
|
||||
For a scalar field
|
||||
\begin_inset Formula $w$
|
||||
\end_inset
|
||||
|
||||
we have
|
||||
\begin_inset Formula $\left(\groupop gw\right)\left(\vect r\right)=w\left(R_{g}^{-1}\vect r\right)$
|
||||
\end_inset
|
||||
|
||||
, whereas for a vector field
|
||||
\begin_inset Formula $\vect w$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $\left(\groupop g\vect w\right)\left(\vect r\right)=R_{g}\vect w\left(R_{g}^{-1}\vect r\right)$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Spherical harmonics
|
||||
\begin_inset Formula $\ush lm$
|
||||
\end_inset
|
||||
|
||||
, being a basis the
|
||||
, being a basis of the
|
||||
\begin_inset Formula $l$
|
||||
\end_inset
|
||||
|
||||
-dimensional representation of
|
||||
\begin_inset Formula $O(3)$
|
||||
\begin_inset Formula $\mathrm{O}(3)$
|
||||
\end_inset
|
||||
|
||||
, transform as
|
||||
|
@ -249,7 +278,7 @@ literal "false"
|
|||
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\ush lm\left(R_{g}\uvec r\right)=\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\ush l{m'}\left(\uvec r\right)
|
||||
\left(\groupop g\ush lm\right)\left(\uvec r\right)=\ush lm\left(R_{g}^{-1}\uvec r\right)=\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\ush l{m'}\left(\uvec r\right)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -260,26 +289,65 @@ where
|
|||
|
||||
denotes the elements of the
|
||||
\emph on
|
||||
Wigner matrix
|
||||
Wigner matrix
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
TODO explicit formulation
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\emph default
|
||||
representing the operation
|
||||
\begin_inset Formula $g$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
By their definition, vector spherical harmonics
|
||||
From their definitions
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:vector spherical harmonics definition"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
and the properties of the gradient operator under coordinate transforms,
|
||||
vector spherical harmonics
|
||||
\begin_inset Formula $\vsh 2lm,\vsh 3lm$
|
||||
\end_inset
|
||||
|
||||
transform in the same way,
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\vsh 2lm\left(R_{g}\uvec r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh 2l{m'}\left(\uvec r\right),\\
|
||||
\vsh 3lm\left(R_{g}\uvec r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh 3l{m'}\left(\uvec r\right),
|
||||
\left(\groupop g\vsh 2lm\right)\left(\uvec r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh 2l{m'}\left(\uvec r\right),\\
|
||||
\left(\groupop g\vsh 3lm\right)\left(\uvec r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh 3l{m'}\left(\uvec r\right),
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\left(\groupop g\vsh 2lm\right)\left(\uvec r\right) & =R_{g}\vsh 2lm\left(R_{g}^{-1}\uvec r\right)=\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh 2l{m'}\left(\uvec r\right),\\
|
||||
\left(\groupop g\vsh 3lm\right)\left(\uvec r\right) & =R_{g}\vsh 2lm\left(R_{g}^{-1}\uvec r\right)=\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh 3l{m'}\left(\uvec r\right),
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
but the remaining set
|
||||
\begin_inset Formula $\vsh 1lm$
|
||||
\end_inset
|
||||
|
@ -288,7 +356,7 @@ but the remaining set
|
|||
cross product in their definition:
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\vsh 3lm\left(R_{g}\uvec r\right)=\sum_{m'=-l}^{l}\widetilde{D_{m,m'}^{l}}\left(g\right)\vsh 3l{m'}\left(\uvec r\right),
|
||||
\left(\groupop g\vsh 1lm\right)\left(\uvec r\right)=\sum_{m'=-l}^{l}\widetilde{D_{m,m'}^{l}}\left(g\right)\vsh 1l{m'}\left(\uvec r\right),
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -301,12 +369,20 @@ where
|
|||
\begin_inset Formula $g$
|
||||
\end_inset
|
||||
|
||||
is a proper rotation, but for spatial inversion operation
|
||||
is a proper rotation,
|
||||
\begin_inset Formula $g\in\mathrm{SO(3)}$
|
||||
\end_inset
|
||||
|
||||
, but for spatial inversion operation
|
||||
\begin_inset Formula $i:\vect r\mapsto-\vect r$
|
||||
\end_inset
|
||||
|
||||
we have
|
||||
\begin_inset Formula $\widetilde{D_{m,m'}^{l}}\left(i\right)=\left(-1\right)^{l+m}D_{m,m'}^{l}\left(i\right)$
|
||||
\begin_inset Formula $D_{m,m'}^{l}\left(i\right)=\left(-1\right)^{l}$
|
||||
\end_inset
|
||||
|
||||
but
|
||||
\begin_inset Formula $\widetilde{D_{m,m'}^{l}}\left(i\right)=\left(-1\right)^{l+1}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
|
@ -335,8 +411,8 @@ noprefix "false"
|
|||
:
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\vswfouttlm 1lm\left(R_{g}\vect r\right) & =\sum_{m'=-l}^{l}\widetilde{D_{m,m'}^{l}}\left(g\right)\vswfouttlm 1l{m'}\left(\vect r\right),\\
|
||||
\vswfouttlm 2lm\left(R_{g}\vect r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vswfouttlm 2l{m'}\left(\vect r\right),
|
||||
\left(\groupop g\vswfouttlm 1lm\right)\left(\vect r\right) & =\sum_{m'=-l}^{l}\widetilde{D_{m,m'}^{l}}\left(g\right)\vswfouttlm 1l{m'}\left(\vect r\right),\\
|
||||
\left(\groupop g\vswfouttlm 2lm\right)\left(\vect r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vswfouttlm 2l{m'}\left(\vect r\right),
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
@ -360,7 +436,7 @@ TODO víc obdivu.
|
|||
\begin_inset Formula $D_{m,m'}^{\tau l}$
|
||||
\end_inset
|
||||
|
||||
that describes the transformation of both types (
|
||||
that describes the transformation of both (
|
||||
\begin_inset Quotes eld
|
||||
\end_inset
|
||||
|
||||
|
@ -376,10 +452,10 @@ electric
|
|||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
) of waves at once:
|
||||
) types of waves at once:
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\vswfouttlm{\tau}lm\left(R_{g}\vect r\right)=\sum_{m'=-l}^{l}D_{m,m'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(\vect r\right).
|
||||
\groupop g\vswfouttlm{\tau}lm\left(\vect r\right)=\sum_{m'=-l}^{l}D_{m,m'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(\vect r\right).
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -397,7 +473,7 @@ noprefix "false"
|
|||
of the electric field around origin in a rotated/reflected system,
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\vect E\left(\omega,R_{g}\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\vect r\right)+\outcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\vect r\right)\right),
|
||||
\left(\groupop g\vect E\right)\left(\omega,\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\vect r\right)+\outcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\vect r\right)\right),
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -505,10 +581,10 @@ noprefix "false"
|
|||
|
||||
\end_inset
|
||||
|
||||
, we have
|
||||
, we have (CHECK THIS CAREFULLY AND EXPLAIN)
|
||||
\begin_inset Formula
|
||||
\begin{multline}
|
||||
\vect E\left(\omega,R_{g}\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)\right.+\\
|
||||
\left(\groupop g\vect E\right)\left(\omega,\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)\right.+\\
|
||||
+\left.\outcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)\right).\label{eq:rotated E field expansion around outside origin}
|
||||
\end{multline}
|
||||
|
||||
|
@ -642,8 +718,56 @@ With these transformation properties in hand, we can proceed to the effects
|
|||
\begin_inset Formula $p\in\mathcal{P}$
|
||||
\end_inset
|
||||
|
||||
; their positions transform as
|
||||
\begin_inset Formula $\vect r_{\pi_{g}p}=R_{g}\vect r_{p}$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $\vect r_{\pi_{g}^{-1}p}=R_{g}^{-1}\vect r_{p}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
For a given particle
|
||||
In the symmetric multiple-scattering problem, transforming the whole field
|
||||
according to
|
||||
\begin_inset Formula $g$
|
||||
\end_inset
|
||||
|
||||
, in terms of field expansion around a particle originally labelled as
|
||||
\begin_inset Formula $p$
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\left(\groupop g\vect E\right)\left(\omega,\vect r\right) & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)\right.+\\
|
||||
& \quad+\left.\outcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)\right)\\
|
||||
& =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{\pi_{g}p}\right)\right)\right.\\
|
||||
& \quad+\left.\outcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{\pi_{g}p}\right)\right)\right)\\
|
||||
& =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm{\pi_{g}^{-1}q}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{q}\right)\right)\right.\\
|
||||
& \quad+\left.\outcoeffptlm{\pi_{g}^{-1}q}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{q}\right)\right)\right)
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
||||
In the last step, we relabeled
|
||||
\begin_inset Formula $q=\pi_{g}p$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
This means that the field expansion coefficients
|
||||
\begin_inset Formula $\rcoeffp p,\outcoeffp p$
|
||||
\end_inset
|
||||
|
||||
transform as
|
||||
\begin_inset Formula
|
||||
\begin{align}
|
||||
\rcoeffptlm p{\tau}lm & \overset{g}{\longmapsto}\rcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right),\nonumber \\
|
||||
\outcoeffptlm p{\tau}lm & \overset{g}{\longmapsto}\outcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right).\label{eq:excitation coefficient under symmetry operation}
|
||||
\end{align}
|
||||
|
||||
\end_inset
|
||||
|
||||
For a given particle
|
||||
\begin_inset Formula $p$
|
||||
\end_inset
|
||||
|
||||
|
@ -683,43 +807,19 @@ noprefix "false"
|
|||
\end_inset
|
||||
|
||||
.
|
||||
The importance of the particle orbits stems from the following: in the
|
||||
multiple-scattering problem, outside of the scatterers
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
< FIXME
|
||||
\end_layout
|
||||
The importance of the particle orbits stems from fact that the expansion
|
||||
coefficients belonging to particles in different orbits are not related
|
||||
together under the group action in
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:excitation coefficient under symmetry operation"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
one has
|
||||
\begin_inset Formula
|
||||
\begin{align}
|
||||
\vect E\left(\omega,R_{g}\vect r\right) & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{\pi_{g}(p)}\right)\right)\right.+\label{eq:rotated E field expansion around outside origin-1}\\
|
||||
& \quad+\left.\outcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{p}\right)\right)\right)\\
|
||||
& =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{p}\right)\right)\right.+\\
|
||||
& \quad+\left.\outcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{p}\right)\right)\right).
|
||||
\end{align}
|
||||
|
||||
\end_inset
|
||||
|
||||
This means that the field expansion coefficients
|
||||
\begin_inset Formula $\rcoeffp p,\outcoeffp p$
|
||||
\end_inset
|
||||
|
||||
transform as
|
||||
\begin_inset Formula
|
||||
\begin{align}
|
||||
\rcoeffptlm p{\tau}lm & \overset{g}{\longmapsto}\rcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right),\nonumber \\
|
||||
\outcoeffptlm p{\tau}lm & \overset{g}{\longmapsto}\outcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right).\label{eq:excitation coefficient under symmetry operation}
|
||||
\end{align}
|
||||
|
||||
\end_inset
|
||||
|
||||
Obviously, the expansion coefficients belonging to particles in different
|
||||
orbits do not mix together.
|
||||
.
|
||||
As before, we introduce a short-hand pairwise matrix notation for
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
|
@ -730,7 +830,7 @@ noprefix "false"
|
|||
|
||||
\end_inset
|
||||
|
||||
(TODO avoid notation clash here in a more consistent and readable way!
|
||||
(TODO avoid notation clash here in a more consistent and readable way!)
|
||||
\begin_inset Formula
|
||||
\begin{align}
|
||||
\rcoeffp p & \overset{g}{\longmapsto}\tilde{J}\left(g\right)\rcoeffp{\pi_{g}^{-1}(p)},\nonumber \\
|
||||
|
|
Loading…
Reference in New Issue