Ewald sums WIP
Former-commit-id: c22a5be53375ed175a6a68639887c4b617785a8a
This commit is contained in:
parent
a6e90b43ae
commit
068e491662
|
@ -712,6 +712,12 @@ Consistent notation of balls.
|
|||
Abstract.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Translation operators: explicit expression, also in sph.
|
||||
harm.
|
||||
convention independent form.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Truncation notation.
|
||||
\end_layout
|
||||
|
|
|
@ -136,7 +136,8 @@ Notation
|
|||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
TODO Fourier transforms, Delta comb, lattice bases etc.
|
||||
TODO Fourier transforms, Delta comb, lattice bases, reciprocal lattices
|
||||
etc.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
|
@ -277,12 +278,12 @@ noprefix "false"
|
|||
|
||||
can be rewritten as follows
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\outcoeffp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}}-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect n,\alpha\right)\right\} }\tropsp{\vect n,\alpha}{\vect m,\beta}\outcoeffp{\vect 0,\beta}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect m}} & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}},\\
|
||||
\outcoeffp{\vect 0,\alpha}\left(\vect k\right)-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect n,\alpha\right)\right\} }\tropsp{\vect 0,\alpha}{\vect m-\vect n,\beta}\outcoeffp{\vect 0,\beta}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect m-\vect n}} & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right),\\
|
||||
\outcoeffp{\vect 0,\alpha}\left(\vect k\right)-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect 0,\alpha\right)\right\} }\tropsp{\vect 0,\alpha}{\vect m,\beta}\outcoeffp{\vect 0,\beta}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect m}} & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right),\\
|
||||
\outcoeffp{\vect 0,\alpha}\left(\vect k\right)-T_{\alpha}\sum_{\beta\in\mathcal{P}}W_{\alpha\beta}\left(\vect k\right)\outcoeffp{\vect 0,\beta}\left(\vect k\right) & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right),
|
||||
\end{align*}
|
||||
\begin{align}
|
||||
\outcoeffp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}}-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect n,\alpha\right)\right\} }\tropsp{\vect n,\alpha}{\vect m,\beta}\outcoeffp{\vect 0,\beta}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect m}} & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}},\nonumber \\
|
||||
\outcoeffp{\vect 0,\alpha}\left(\vect k\right)-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect n,\alpha\right)\right\} }\tropsp{\vect 0,\alpha}{\vect m-\vect n,\beta}\outcoeffp{\vect 0,\beta}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect m-\vect n}} & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right),\nonumber \\
|
||||
\outcoeffp{\vect 0,\alpha}\left(\vect k\right)-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect 0,\alpha\right)\right\} }\tropsp{\vect 0,\alpha}{\vect m,\beta}\outcoeffp{\vect 0,\beta}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect m}} & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right),\nonumber \\
|
||||
\outcoeffp{\vect 0,\alpha}\left(\vect k\right)-T_{\alpha}\sum_{\beta\in\mathcal{P}}W_{\alpha\beta}\left(\vect k\right)\outcoeffp{\vect 0,\beta}\left(\vect k\right) & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right),\label{eq:Multiple-scattering problem unit cell}
|
||||
\end{align}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
@ -299,16 +300,35 @@ lattice Fourier transform
|
|||
of the translation operator,
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
W_{\alpha\beta}(\vect k)\equiv\sum_{\vect m\in\ints^{d}}\left(1-\delta_{\alpha\beta}\right)\tropsp{\vect 0,\alpha}{\vect m,\beta}e^{i\vect k\cdot\vect R_{\vect m}}.\label{eq:W definition}
|
||||
W_{\alpha\beta}(\vect k)\equiv\sum_{\vect m\in\ints^{d}}\left(1-\delta_{\alpha\beta}\right)\tropsp{\vect 0,\alpha}{\vect m,\beta}e^{i\vect k\cdot\vect R_{\vect m}},\label{eq:W definition}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
evaluation of which is possible but quite non-trivial due to the infinite
|
||||
lattice sum, so we explain it separately in Sect.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "subsec:W operator evaluation"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Computing the Fourier sum of the translation operator
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "subsec:W operator evaluation"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
@ -576,7 +596,178 @@ W_{\alpha\beta}^{\textup{L}}\left(\vect k\right) & = & \frac{\left|\det\rec{\bas
|
|||
|
||||
\end_inset
|
||||
|
||||
where both sums should converge nicely.
|
||||
where both sums expected to converge nicely.
|
||||
We note that the elements of the translation operators
|
||||
\begin_inset Formula $\tropr,\trops$
|
||||
\end_inset
|
||||
|
||||
in
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:translation operator"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
can be rewritten as linear combinations of expressions
|
||||
\begin_inset Formula $\ush{\nu}{\mu}\left(\uvec d\right)j_{n}\left(d\right),\ush{\nu}{\mu}\left(\uvec d\right)h_{n}^{(1)}\left(d\right)$
|
||||
\end_inset
|
||||
|
||||
(TODO WRITE THEM EXPLICITLY IN THIS FORM), respectively, hence if we are
|
||||
able evaluate the lattice sums sums
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
CHECK THE FOLLOWING EXPRESSION FOR CORRECT FUNCTION ARGUMENTS
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\sigma_{\nu}^{\mu}\left(\vect k\right)=\sum_{\vect n\in\ints^{d}\backslash\left\{ \vect 0\right\} }e^{i\vect{\vect k}\cdot\vect R_{\vect n}}\ush{\nu}{\mu}\left(\uvec{R_{n}}\right)h_{n}^{(1)}\left(R_{n}\right),\label{eq:sigma lattice sums}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
then by linearity, we can get the
|
||||
\begin_inset Formula $W_{\alpha\beta}\left(\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
operator as well.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
TODO ADD MOROZ AND OTHER REFS HERE.
|
||||
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
key "linton_one-_2009"
|
||||
literal "true"
|
||||
|
||||
\end_inset
|
||||
|
||||
offers an exponentially convergent Ewald-type summation method for
|
||||
\begin_inset Formula $\sigma_{\nu}^{\mu}\left(\vect k\right)=\sigma_{\nu}^{\mu(\mathrm{S})}\left(\vect k\right)+\sigma_{\nu}^{\mu(\mathrm{L})}\left(\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Here we rewrite them in a form independent on the convention used for spherical
|
||||
harmonics (as long as they are complex
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
lepší formulace
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
).
|
||||
The short-range part reads (UNIFY INDEX NOTATION)
|
||||
\begin_inset Formula
|
||||
\begin{multline}
|
||||
\sigma_{n}^{m(\mathrm{S})}\left(\vect{\beta}\right)=-\frac{2^{n+1}i}{k^{n+1}\sqrt{\pi}}\sum_{\vect R\in\Lambda}^{'}\left|\vect R\right|^{n}e^{i\vect{\beta}\cdot\vect R}Y_{n}^{m}\left(\vect R\right)\int_{\eta}^{\infty}e^{-\left|\vect R\right|^{2}\xi^{2}}e^{-k/4\xi^{2}}\xi^{2n}\ud\xi\\
|
||||
+\frac{\delta_{n0}\delta_{m0}}{\sqrt{4\pi}}\Gamma\left(-\frac{1}{2},-\frac{k}{4\eta^{2}}\right)Y_{n}^{m},\label{eq:Ewald in 3D short-range part}
|
||||
\end{multline}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
NEPATŘÍ TAM NĚJAKÁ DELTA FUNKCE K PŮVODNÍMU
|
||||
\begin_inset Formula $\sigma_{n}^{m(0)}$
|
||||
\end_inset
|
||||
|
||||
?
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
and the long-range part (FIXME, this is the 2D version; include the 1D and
|
||||
3D lattice expressions as well)
|
||||
\begin_inset Formula
|
||||
\begin{multline}
|
||||
\sigma_{n}^{m(\mathrm{L})}\left(\vect{\beta}\right)=-\frac{i^{n+1}}{k^{2}\mathscr{A}}\sqrt{\pi}2\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\times\\
|
||||
\times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(\frac{\pi}{2},\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/k\right)^{n-2j}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\gamma_{pq}\right)^{2j-1}\label{eq:Ewald in 3D long-range part}
|
||||
\end{multline}
|
||||
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $\xi$
|
||||
\end_inset
|
||||
|
||||
is TODO,
|
||||
\begin_inset Formula $\beta_{pq}$
|
||||
\end_inset
|
||||
|
||||
is TODO,
|
||||
\begin_inset Formula $\Gamma_{j,pq}$
|
||||
\end_inset
|
||||
|
||||
is TODO and
|
||||
\begin_inset Formula $\eta$
|
||||
\end_inset
|
||||
|
||||
is a real parameter that determines the pace of convergence of both parts.
|
||||
The larger
|
||||
\begin_inset Formula $\eta$
|
||||
\end_inset
|
||||
|
||||
is, the faster
|
||||
\begin_inset Formula $\sigma_{n}^{m(\mathrm{S})}\left(\vect{\beta}\right)$
|
||||
\end_inset
|
||||
|
||||
converges but the slower
|
||||
\begin_inset Formula $\sigma_{n}^{m(\mathrm{L})}\left(\vect{\beta}\right)$
|
||||
\end_inset
|
||||
|
||||
converges.
|
||||
Therefore (based on the lattice geometry) it has to be adjusted in a way
|
||||
that a reasonable amount of terms needs to be evaluated numerically from
|
||||
both
|
||||
\begin_inset Formula $\sigma_{n}^{m(\mathrm{S})}\left(\vect{\beta}\right)$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $\sigma_{n}^{m(\mathrm{L})}\left(\vect{\beta}\right)$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Generally, a good choice for
|
||||
\begin_inset Formula $\eta$
|
||||
\end_inset
|
||||
|
||||
is TODO; in order to achieve accuracy TODO, one has to evaluate the terms
|
||||
on TODO lattice points.
|
||||
(I HAVE SOME DERIVATIONS OF THE ESTIMATES IN MY NOTES; SHOULD I INCLUDE
|
||||
THEM?)
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
In practice, the integrals in
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Ewald in 3D short-range part"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
can be easily evaluated by numerical quadrature and the incomplete
|
||||
\begin_inset Formula $\Gamma$
|
||||
\end_inset
|
||||
|
||||
-functions using the series TODO and TODO from DLMF.
|
||||
\end_layout
|
||||
|
||||
\end_body
|
||||
|
|
Loading…
Reference in New Issue