[dirty dipoles] regularised hankel functions

Former-commit-id: 58b4d91b718a0d864555961bb199761d1774313d
This commit is contained in:
Marek Nečada 2018-01-18 12:55:15 +00:00
parent 8001b67603
commit 07c530306a
3 changed files with 111 additions and 4 deletions

View File

@ -1,19 +1,19 @@
#include "bessels.h"
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
static const double ln2 = 0.69314718055994531;
#include <stdio.h>
// general; gives an array of size
// general; gives an array of size xxx with TODODESC
complex double * hankelcoefftable_init(size_t maxn) {
complex double *hct = malloc((maxn+1)*(maxn+2)/2 * sizeof(complex double));
for(size_t n = 0; n <= maxn; ++n) {
complex double *hcs = hankelcoeffs_get(hct,n);
for (size_t k = 0; k <= n; ++k) {
double lcoeff = lgamma(n+k+1) - lgamma(n-k+1) - lgamma(k+1) - k*ln2;
printf("%f, %.16f\n", lcoeff, exp(lcoeff));
// for some reason, casting k-n to double does not work,so
// cpow (I, k-n-1) cannot be used...
complex double ifactor;
@ -38,3 +38,57 @@ complex double * hankelcoefftable_init(size_t maxn) {
return hct;
}
void hankelLR2_fill(complex double *target, size_t maxn, complex double *hct,
unsigned kappa, double c, double x) {
memset(target, 0, (maxn+1)*sizeof(complex double));
double regularisator = pow(1. - exp(-c * x), (double) kappa);
complex double expix = cexp(I * x);
double xfrac = 1.; // x ** (-1-k)
for (size_t k = 0; k < 2; ++k) {
xfrac /= x;
for(size_t n = k; n <= maxn; ++n)
target[n] += regularisator * xfrac * hankelcoeffs_get(hct,n)[k];
}
for(size_t n = 0; n <= maxn; ++n)
target[n] *= expix;
}
void hankelSR2_fill(complex double *target, size_t maxn, complex double *hct,
unsigned kappa, double c, double x) {
memset(target, 0, (maxn+1)*sizeof(complex double));
double antiregularisator = 1 - pow(1. - exp(-c * x), (double) kappa);
complex double expix = cexp(I * x);
double xfrac = 1.; // x ** (-1-k)
for (size_t k = 0; k < maxn; ++k) {
xfrac /= x;
for(size_t n = k; n <= maxn; ++n)
target[n] += ((k<2) ? antiregularisator : 1)
* xfrac * hankelcoeffs_get(hct,n)[k];
}
for(size_t n = 0; n <= maxn; ++n)
target[n] *= expix;
}
void hankelparts_fill(complex double *lrt, complex double *srt, size_t maxn,
size_t lrk_cutoff, complex double *hct,
unsigned kappa, double c, double x) {
memset(lrt, 0, (maxn+1)*sizeof(complex double));
memset(srt, 0, (maxn+1)*sizeof(complex double));
double regularisator = pow(1. - exp(-c * x), (double) kappa);
double antiregularisator = 1. - regularisator;
double xfrac = 1.; // x ** (-1-k)
for (size_t k = 0; k <= maxn; ++k) {
xfrac /= x;
for(size_t n = k; n <= maxn; ++n)
srt[n] += ((k<lrk_cutoff) ? antiregularisator : 1)
* xfrac * hankelcoeffs_get(hct,n)[k];
if (k < lrk_cutoff) for (size_t n = k; n <= maxn; ++n)
lrt[n] += regularisator * xfrac * hankelcoeffs_get(hct,n)[k];
}
complex double expix = cexp(I * x);
for(size_t n = 0; n <= maxn; ++n){
srt[n] *= expix;
lrt[n] *= expix;
}
}

View File

@ -15,4 +15,10 @@ hankelcoeffs_get(complex double *hankelcoefftable, size_t n){
}
// general; target_longrange and target_shortrange are of size (maxn+1)
void hankelparts_fill(complex double *target_longrange, complex double *target_shortrange,
size_t maxn, size_t longrange_k_cutoff, // x**(-(k+1)-1) terms go completely to short-range part
complex double *hankelcoefftable,
unsigned kappa, double c, double x);
#endif //BESSELS_H

47
dipdip-dirty/testmain.c Normal file
View File

@ -0,0 +1,47 @@
#include "bessels.h"
#include <stdio.h>
#include <stdlib.h>
#if 0
int main() {
size_t maxn = 5;
complex double *hct = hankelcoefftable_init(maxn);
for (size_t n = 0; n <= maxn; ++n) {
printf("n = %zd\n", n);
for(size_t k = 0; k<=n; ++k)
printf("%p: %f + %fj,\n", hankelcoeffs_get(hct,n) + k, creal(hankelcoeffs_get(hct,n)[k]),
cimag(hankelcoeffs_get(hct,n)[k]));
printf("\n");
}
printf("%f+%fj\n",creal(cpow(I,(ptrdiff_t)-1)), cimag(cpow(I,(ptrdiff_t)-1)));
return 0;
}
#endif
//#if 0
int main() {
size_t maxn = 6;
size_t lrk_cutoff = 2;
size_t kappa = 4;
double c = 0.1324;
double xmin = 0.;
double xstep = 0.001;
double xmax = 20;
complex double *hct = hankelcoefftable_init(maxn);
complex double srhankel[maxn+1];
complex double lrhankel[maxn+1];
for(double x = xmin; x <= xmax; x += xstep) {
hankelparts_fill(lrhankel, srhankel, maxn, lrk_cutoff, hct, kappa, c, x);
printf("%f ", x);
for(size_t n = 0; n <= maxn; ++n)
printf("%.16e %.16e %.16e %.16e ", creal(lrhankel[n]), cimag(lrhankel[n]), creal(srhankel[n]), cimag(srhankel[n]));
printf("\n");
}
free(hct);
return 0;
}
//#endif