Adjustment of Ewald parameter.

Former-commit-id: 45810dae1a715a12ece882200501c2304528d0a1
This commit is contained in:
Marek Nečada 2020-06-07 21:53:59 +03:00
parent cb89e208ce
commit 07fe3a4645
1 changed files with 150 additions and 4 deletions

View File

@ -912,7 +912,12 @@ Note that
fast and can be summed directly, and a long-range part which decays poorly
but is fairly smooth everywhere, so that its Fourier transform decays fast
enough, and to deal with the long range part by Poisson summation over
the reciprocal lattice.
the reciprocal lattice; these two parts put together shall give an analytical
continuation of the original sum for
\begin_inset Formula $\Im\kappa\le0$
\end_inset
.
This idea dates back to Ewald
\begin_inset CommandInset citation
LatexCommand cite
@ -1615,7 +1620,7 @@ and if the normal component
\begin_inset Formula
\begin{multline}
\sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\vect k,\vect s\right)=-\frac{i^{l+1}}{\kappa^{d}\mathcal{A}}\pi^{2+\left(3-d\right)/2}2\left(\left(l-m\right)/2\right)!\left(\left(l+m\right)/2\right)!\times\\
\times\sum_{\vect K\in\Lambda^{*}}\underbrace{e^{i\vect K\cdot\vect s}}_{\text{nemá tu být \ensuremath{\vect{k\cdot s}?}}}\ush lm\left(\vect k+\vect K\right)\sum_{j=0}^{\left[\left(l-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\left|\vect k+\vect K\right|/\kappa\right)^{l-2j}\Gamma\left(\frac{d-1}{2}-j,\frac{\kappa^{2}\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)}{4\eta^{2}}\right)}{j!\left(\frac{1}{2}\left(l-m\right)-j\right)!\left(\frac{1}{2}\left(l+m\right)-j\right)!}\times\\
\times\sum_{\vect K\in\Lambda^{*}}\underbrace{e^{i\vect K\cdot\vect s}}_{\text{nemá tu být \ensuremath{\vect{k\cdot s}?}}}\ush lm\left(\vect k+\vect K\right)\sum_{j=0}^{\left[\left(l-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\left|\vect k+\vect K\right|/\kappa\right)^{l-2j}\Gamma\left(\frac{d-1}{2}-j,\frac{\kappa^{2}\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)^{2}}{4\eta^{2}}\right)}{j!\left(\frac{1}{2}\left(l-m\right)-j\right)!\left(\frac{1}{2}\left(l+m\right)-j\right)!}\times\\
\times\left(\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)\right)^{2j+3-d}\label{eq:Ewald in 3D long-range part 1D 2D z = 0}
\end{multline}
@ -1951,8 +1956,149 @@ Whatabout different geometries?
\end_inset
However, at larger wavelengths, TODO BLA BLA BLA which is detrimental for
accuracy in floating point arithmetics.
However, in floating point arithmetics, the magnitude of the summands must
be taken into account as well in order to maintain accuracy.
There is a particular problem with the
\begin_inset Quotes eld
\end_inset
central
\begin_inset Quotes erd
\end_inset
reciprocal lattice points in the long-range sums for which the real part
of
\begin_inset Formula $\left|\vect k+\vect K\right|^{2}-\kappa^{2}$
\end_inset
is negative: the incomplete
\begin_inset Formula $\Gamma$
\end_inset
function present in the sum (either explicitly or in the expansions of
\family roman
\series medium
\shape up
\size normal
\emph off
\nospellcheck off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
\begin_inset Formula $\Delta_{j}$
\end_inset
)
\family default
\series default
\shape default
\size default
\emph default
\nospellcheck default
\bar default
\strikeout default
\xout default
\uuline default
\uwave default
\noun default
\color inherit
grows exponentially with respect to the negative second argument, with
asymptotic behaviour
\begin_inset Formula $\Gamma\left(a,z\right)\sim e^{-z}z^{a-1}$
\end_inset
.
Therefore for higher frequencies, the parameter
\begin_inset Formula $\eta$
\end_inset
needs to be adjusted in a way that keeps the value of
\begin_inset Formula $\Gamma\left(a,\frac{\left|\vect k+\vect K\right|^{2}-\kappa^{2}}{4\eta^{2}}\right)$
\end_inset
within reasonable bounds.
\begin_inset Note Note
status open
\begin_layout Plain Layout
Setting a target maximum magnitude for
\begin_inset Formula $M$
\end_inset
, so that
\begin_inset Formula $\left|\Gamma\left(a,-\left|z\right|\right)\right|\lesssim M$
\end_inset
, using the asymptotic estimate
\begin_inset Formula $\Gamma\left(a,-\left|z\right|\right)\sim e^{-\left|z\right|}\left|z\right|^{a-1}$
\end_inset
, we get
\begin_inset Formula
\begin{align*}
e^{-\left|z\right|}\left|z\right|^{a-1} & \lesssim M,\\
-\left|z\right|\left(a-1\right)\log\left|z\right| & \lesssim\log M.
\end{align*}
\end_inset
\end_layout
\end_inset
If we assume that
\begin_inset Formula $\vect k$
\end_inset
lies in the first Brillouin zone, the minimum real part of the second argument
of the
\begin_inset Formula $\Gamma$
\end_inset
function will be
\begin_inset Formula $\left(\left|\vect k\right|^{2}-\kappa^{2}\right)/4\eta^{2}$
\end_inset
, so setting
\begin_inset Formula $\eta\ge\sqrt{\left|\kappa\right|^{2}-\left|\vect k\right|^{2}}/2\log M$
\end_inset
eliminates the exponential growth in the incomplete
\begin_inset Formula $\Gamma$
\end_inset
function, where the constant
\begin_inset Formula $M$
\end_inset
is chosen to represent the (rough) maximum tolerated magnitude of the summand
with regard to target accuracy.
\begin_inset Note Note
status open
\begin_layout Plain Layout
\begin_inset Formula
\[
-\frac{\left|\left|\vect k\right|^{2}-\kappa^{2}\right|}{4\eta^{2}}\left(a-1\right)2\log\frac{\left|\left|\vect k\right|^{2}-\kappa^{2}\right|^{\frac{1}{2}}}{2\eta}\lesssim\log M
\]
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard