Adjustment of Ewald parameter.
Former-commit-id: 45810dae1a715a12ece882200501c2304528d0a1
This commit is contained in:
parent
cb89e208ce
commit
07fe3a4645
|
@ -912,7 +912,12 @@ Note that
|
|||
fast and can be summed directly, and a long-range part which decays poorly
|
||||
but is fairly smooth everywhere, so that its Fourier transform decays fast
|
||||
enough, and to deal with the long range part by Poisson summation over
|
||||
the reciprocal lattice.
|
||||
the reciprocal lattice; these two parts put together shall give an analytical
|
||||
continuation of the original sum for
|
||||
\begin_inset Formula $\Im\kappa\le0$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
This idea dates back to Ewald
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
|
@ -1615,7 +1620,7 @@ and if the normal component
|
|||
\begin_inset Formula
|
||||
\begin{multline}
|
||||
\sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\vect k,\vect s\right)=-\frac{i^{l+1}}{\kappa^{d}\mathcal{A}}\pi^{2+\left(3-d\right)/2}2\left(\left(l-m\right)/2\right)!\left(\left(l+m\right)/2\right)!\times\\
|
||||
\times\sum_{\vect K\in\Lambda^{*}}\underbrace{e^{i\vect K\cdot\vect s}}_{\text{nemá tu být \ensuremath{\vect{k\cdot s}?}}}\ush lm\left(\vect k+\vect K\right)\sum_{j=0}^{\left[\left(l-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\left|\vect k+\vect K\right|/\kappa\right)^{l-2j}\Gamma\left(\frac{d-1}{2}-j,\frac{\kappa^{2}\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)}{4\eta^{2}}\right)}{j!\left(\frac{1}{2}\left(l-m\right)-j\right)!\left(\frac{1}{2}\left(l+m\right)-j\right)!}\times\\
|
||||
\times\sum_{\vect K\in\Lambda^{*}}\underbrace{e^{i\vect K\cdot\vect s}}_{\text{nemá tu být \ensuremath{\vect{k\cdot s}?}}}\ush lm\left(\vect k+\vect K\right)\sum_{j=0}^{\left[\left(l-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\left|\vect k+\vect K\right|/\kappa\right)^{l-2j}\Gamma\left(\frac{d-1}{2}-j,\frac{\kappa^{2}\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)^{2}}{4\eta^{2}}\right)}{j!\left(\frac{1}{2}\left(l-m\right)-j\right)!\left(\frac{1}{2}\left(l+m\right)-j\right)!}\times\\
|
||||
\times\left(\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)\right)^{2j+3-d}\label{eq:Ewald in 3D long-range part 1D 2D z = 0}
|
||||
\end{multline}
|
||||
|
||||
|
@ -1951,8 +1956,149 @@ Whatabout different geometries?
|
|||
|
||||
\end_inset
|
||||
|
||||
However, at larger wavelengths, TODO BLA BLA BLA which is detrimental for
|
||||
accuracy in floating point arithmetics.
|
||||
However, in floating point arithmetics, the magnitude of the summands must
|
||||
be taken into account as well in order to maintain accuracy.
|
||||
There is a particular problem with the
|
||||
\begin_inset Quotes eld
|
||||
\end_inset
|
||||
|
||||
central
|
||||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
reciprocal lattice points in the long-range sums for which the real part
|
||||
of
|
||||
\begin_inset Formula $\left|\vect k+\vect K\right|^{2}-\kappa^{2}$
|
||||
\end_inset
|
||||
|
||||
is negative: the incomplete
|
||||
\begin_inset Formula $\Gamma$
|
||||
\end_inset
|
||||
|
||||
function present in the sum (either explicitly or in the expansions of
|
||||
|
||||
\family roman
|
||||
\series medium
|
||||
\shape up
|
||||
\size normal
|
||||
\emph off
|
||||
\nospellcheck off
|
||||
\bar no
|
||||
\strikeout off
|
||||
\xout off
|
||||
\uuline off
|
||||
\uwave off
|
||||
\noun off
|
||||
\color none
|
||||
|
||||
\begin_inset Formula $\Delta_{j}$
|
||||
\end_inset
|
||||
|
||||
)
|
||||
\family default
|
||||
\series default
|
||||
\shape default
|
||||
\size default
|
||||
\emph default
|
||||
\nospellcheck default
|
||||
\bar default
|
||||
\strikeout default
|
||||
\xout default
|
||||
\uuline default
|
||||
\uwave default
|
||||
\noun default
|
||||
\color inherit
|
||||
grows exponentially with respect to the negative second argument, with
|
||||
asymptotic behaviour
|
||||
\begin_inset Formula $\Gamma\left(a,z\right)\sim e^{-z}z^{a-1}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Therefore for higher frequencies, the parameter
|
||||
\begin_inset Formula $\eta$
|
||||
\end_inset
|
||||
|
||||
needs to be adjusted in a way that keeps the value of
|
||||
\begin_inset Formula $\Gamma\left(a,\frac{\left|\vect k+\vect K\right|^{2}-\kappa^{2}}{4\eta^{2}}\right)$
|
||||
\end_inset
|
||||
|
||||
within reasonable bounds.
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Setting a target maximum magnitude for
|
||||
\begin_inset Formula $M$
|
||||
\end_inset
|
||||
|
||||
, so that
|
||||
\begin_inset Formula $\left|\Gamma\left(a,-\left|z\right|\right)\right|\lesssim M$
|
||||
\end_inset
|
||||
|
||||
, using the asymptotic estimate
|
||||
\begin_inset Formula $\Gamma\left(a,-\left|z\right|\right)\sim e^{-\left|z\right|}\left|z\right|^{a-1}$
|
||||
\end_inset
|
||||
|
||||
, we get
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
e^{-\left|z\right|}\left|z\right|^{a-1} & \lesssim M,\\
|
||||
-\left|z\right|\left(a-1\right)\log\left|z\right| & \lesssim\log M.
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
If we assume that
|
||||
\begin_inset Formula $\vect k$
|
||||
\end_inset
|
||||
|
||||
lies in the first Brillouin zone, the minimum real part of the second argument
|
||||
of the
|
||||
\begin_inset Formula $\Gamma$
|
||||
\end_inset
|
||||
|
||||
function will be
|
||||
\begin_inset Formula $\left(\left|\vect k\right|^{2}-\kappa^{2}\right)/4\eta^{2}$
|
||||
\end_inset
|
||||
|
||||
, so setting
|
||||
\begin_inset Formula $\eta\ge\sqrt{\left|\kappa\right|^{2}-\left|\vect k\right|^{2}}/2\log M$
|
||||
\end_inset
|
||||
|
||||
eliminates the exponential growth in the incomplete
|
||||
\begin_inset Formula $\Gamma$
|
||||
\end_inset
|
||||
|
||||
function, where the constant
|
||||
\begin_inset Formula $M$
|
||||
\end_inset
|
||||
|
||||
is chosen to represent the (rough) maximum tolerated magnitude of the summand
|
||||
with regard to target accuracy.
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula
|
||||
\[
|
||||
-\frac{\left|\left|\vect k\right|^{2}-\kappa^{2}\right|}{4\eta^{2}}\left(a-1\right)2\log\frac{\left|\left|\vect k\right|^{2}-\kappa^{2}\right|^{\frac{1}{2}}}{2\eta}\lesssim\log M
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
|
Loading…
Reference in New Issue