ewald.lyx: Fix sign connection formula for cylindrical bessel functions
Former-commit-id: 6ab112965c8c3060615baeb3d534bda23bf09d44
This commit is contained in:
parent
8bf9a1c54d
commit
08f0332dbb
|
@ -3099,7 +3099,7 @@ where the spherical Hankel transform
|
||||||
2)
|
2)
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\[
|
||||||
\bsht lg(k)\equiv\int_{0}^{\infty}\ud r\,r^{2}g(r)j_{l}\left(kr\right).
|
\bsht lg(k)\equiv\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).
|
||||||
\]
|
\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -3109,7 +3109,7 @@ Using this convention, the inverse spherical Hankel transform is given by
|
||||||
3)
|
3)
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\[
|
||||||
g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\,k^{2}\bsht lg(k)j_{l}(k),
|
g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\, k^{2}\bsht lg(k)j_{l}(k),
|
||||||
\]
|
\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -3122,7 +3122,7 @@ so it is not unitary.
|
||||||
An unitary convention would look like this:
|
An unitary convention would look like this:
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\,r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition}
|
\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -3176,8 +3176,8 @@ where the Hankel transform of order
|
||||||
is defined as
|
is defined as
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{eqnarray}
|
\begin{eqnarray}
|
||||||
\pht mg\left(k\right) & = & \int_{0}^{\infty}\ud r\,g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition}\\
|
\pht mg\left(k\right) & = & \int_{0}^{\infty}\ud r\, g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition}\\
|
||||||
& = & \left(-1\right)^{m}\int_{0}^{\infty}\ud r\,g(r)J_{\left|m\right|}(kr)r
|
& = & \left(-1\right)^{m}\int_{0}^{\infty}\ud r\, g(r)J_{-m}(kr)r
|
||||||
\end{eqnarray}
|
\end{eqnarray}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
Loading…
Reference in New Issue