diff --git a/notes/ewald.lyx b/notes/ewald.lyx index 4bc92de..1f10ef6 100644 --- a/notes/ewald.lyx +++ b/notes/ewald.lyx @@ -231,6 +231,11 @@ theorems-starred \end_inset +\begin_inset FormulaMacro +\newcommand{\swv}{\mathscr{H}} +\end_inset + + \end_layout \begin_layout Title @@ -3014,6 +3019,116 @@ reference "eq:prudnikov2 eq 2.12.9.14" \end_inset +\end_layout + +\begin_layout Section +Exponentially converging decompositions +\end_layout + +\begin_layout Standard +(As in Linton, Thompson, Journal of Computational Physics 228 (2009) 1815–1829 + [LT].) +\end_layout + +\begin_layout Standard +[LT] offers a better decomposition than above. + Let +\begin_inset Formula +\begin{eqnarray*} +\sigma_{n}^{m}\left(\vect{\beta}\right) & = & \sum_{\vect R\in\Lambda}^{'}e^{i\vect{\beta}\cdot\vect R}\swv_{n}^{m}\left(\vect R\right),\\ +\swv_{n}^{m}\left(\vect r\right) & = & Y_{n}^{m}\left(\hat{\vect r}\right)h_{n}\left(\left|\vect r\right|\right). +\end{eqnarray*} + +\end_inset + +Then, we have a decomposition +\begin_inset Formula $\sigma_{n}^{m}=\sigma_{n}^{m(0)}+\sigma_{n}^{m(1)}+\sigma_{n}^{m(2)}$ +\end_inset + +. + The real-space sum part +\begin_inset Formula $\sigma_{n}^{m(2)}$ +\end_inset + + is already +\begin_inset Quotes eld +\end_inset + +convention independent +\begin_inset Quotes erd +\end_inset + + in [LT(4.5)] (i.e. + the result is also expressed in terms of +\begin_inset Formula $Y_{n}^{m}$ +\end_inset + +, so it is valid regardless of normalisation or CS-phase convention used + inside +\begin_inset Formula $Y_{n}^{m}$ +\end_inset + +): +\begin_inset Formula +\[ +\sigma_{n}^{m(2)}=-\frac{2^{n+1}i}{k^{n+1}\sqrt{\pi}}\sum_{\vect R\in\Lambda}^{'}\left|\vect R\right|^{n}e^{i\vect{\beta}\cdot\vect R}Y_{n}^{m}\left(\vect R\right)\int_{\eta}^{\infty}e^{-\left|\vect R\right|^{2}\xi^{2}}e^{-k/4\xi^{2}}\xi^{2n}\ud\xi. +\] + +\end_inset + +However the other parts in [LT] are convention dependend, so let me fix + it here. + [LT] use the convention [LT(A.7)] +\begin_inset Formula +\begin{eqnarray*} +P_{n}^{m}\left(0\right) & = & \frac{\left(-1\right)^{\left(n-m\right)/2}\left(n+m\right)!}{2^{n}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!}\qquad n+m\mbox{ even,}\\ +Y_{n}^{m}\left(\theta,\phi\right) & = & \left(-1\right)^{m}\sqrt{\frac{\left(2n+1\right)\left(n-m\right)!}{4\pi\left(n+m\right)!}}P_{n}^{m}\left(\cos\theta\right)e^{im\phi}, +\end{eqnarray*} + +\end_inset + +noting that the former formula is valid also for negative +\begin_inset Formula $m$ +\end_inset + + (as can be checked by substituting [LT(A.4)]). + Therefore +\begin_inset Formula +\begin{eqnarray*} +Y_{n}^{m}\left(\frac{\pi}{2},\phi\right) & = & \left(-1\right)^{m}\sqrt{\frac{\left(2n+1\right)\left(n-m\right)!}{4\pi\left(n+m\right)!}}\frac{\left(-1\right)^{\left(n-m\right)/2}\left(n+m\right)!}{2^{n}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!}e^{im\phi}\\ + & = & \frac{\left(-1\right)^{\left(n+m\right)/2}\sqrt{\left(2n+1\right)\left(n-m\right)!\left(n+m\right)!}}{\sqrt{\pi}2^{n+1}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!}e^{im\phi} +\end{eqnarray*} + +\end_inset + + Let us substitute this into [LT(4.5)] +\begin_inset Formula +\begin{eqnarray*} +\sigma_{n}^{m(1)} & = & -\frac{i^{n+1}}{2k^{2}\mathscr{A}}\left(-1\right)^{\left(n+m\right)/2}\sqrt{\left(2n+1\right)\left(n-m\right)!\left(n+m\right)!}\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/2k\right)^{n-2j}e^{im\phi_{\vect{\beta}_{pq}}}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\frac{\gamma_{pq}}{2}\right)^{2j-1}\\ + & = & -\frac{i^{n+1}}{2k^{2}\mathscr{A}}\sqrt{\pi}2^{n+1}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!Y_{n}^{m}\left(0,\phi_{\vect{\beta}_{pq}}\right)\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/2k\right)^{n-2j}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\frac{\gamma_{pq}}{2}\right)^{2j-1}, +\end{eqnarray*} + +\end_inset + +which basically replaces an ugly prefactor with another, similarly ugly + one. + See [LT] for the meanings of the +\begin_inset Formula $pq$ +\end_inset + +-indexed symbols. +\end_layout + +\begin_layout Standard +To have it complete, +\begin_inset Formula +\[ +\sigma_{n}^{m(0)}=\frac{\delta_{n0}\delta_{m0}}{4\pi}\Gamma\left(-\frac{1}{2},-\frac{k}{4\eta^{2}}\right)=\frac{\delta_{n0}\delta_{m0}}{\sqrt{4\pi}}\Gamma\left(-\frac{1}{2},-\frac{k}{4\eta^{2}}\right)Y_{n}^{m}. +\] + +\end_inset + + \end_layout \begin_layout Section @@ -3100,7 +3215,7 @@ where the spherical Hankel transform 2) \begin_inset Formula \[ -\bsht lg(k)\equiv\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right). +\bsht lg(k)\equiv\int_{0}^{\infty}\ud r\,r^{2}g(r)j_{l}\left(kr\right). \] \end_inset @@ -3110,7 +3225,7 @@ Using this convention, the inverse spherical Hankel transform is given by 3) \begin_inset Formula \[ -g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\, k^{2}\bsht lg(k)j_{l}(k), +g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\,k^{2}\bsht lg(k)j_{l}(k), \] \end_inset @@ -3123,7 +3238,7 @@ so it is not unitary. An unitary convention would look like this: \begin_inset Formula \begin{equation} -\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition} +\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\,r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition} \end{equation} \end_inset @@ -3177,8 +3292,8 @@ where the Hankel transform of order is defined as \begin_inset Formula \begin{eqnarray} -\pht mg\left(k\right) & = & \int_{0}^{\infty}\ud r\, g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition}\\ - & = & \left(-1\right)^{m}\int_{0}^{\infty}\ud r\, g(r)J_{-m}(kr)r +\pht mg\left(k\right) & = & \int_{0}^{\infty}\ud r\,g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition}\\ + & = & \left(-1\right)^{m}\int_{0}^{\infty}\ud r\,g(r)J_{-m}(kr)r \end{eqnarray} \end_inset