diff --git a/lepaper/arrayscat.lyx b/lepaper/arrayscat.lyx index 1a0067a..99641b2 100644 --- a/lepaper/arrayscat.lyx +++ b/lepaper/arrayscat.lyx @@ -485,7 +485,17 @@ These are compatibility macros for the (...)-old files: \end_inset -matrix simulations in finite and infinite systems of electromagnetic scatterers - (TODO better title) + +\begin_inset Marginal +status open + +\begin_layout Plain Layout +(TODO better title) +\end_layout + +\end_inset + + \end_layout \begin_layout Standard @@ -776,10 +786,6 @@ Truncation notation. Example results and benchmarks with BEM; figures! \end_layout -\begin_layout Itemize -Fix and unify notation (mainly indices) in infinite lattices section. -\end_layout - \begin_layout Itemize Carefully check the transformation directions in sec. diff --git a/lepaper/finite.lyx b/lepaper/finite.lyx index 12c7140..4aac440 100644 --- a/lepaper/finite.lyx +++ b/lepaper/finite.lyx @@ -104,10 +104,6 @@ name "sec:Finite" \end_layout -\begin_layout Subsection -Motivation/intro -\end_layout - \begin_layout Standard The basic idea of MSTMM is quite simple: the driving electromagnetic field incident onto a scatterer is expanded into a vector spherical wavefunction @@ -127,8 +123,8 @@ The expressions appearing in the re-expansions are fairly complicated, and the implementation of MSTMM is extremely error-prone also due to the various conventions used in the literature. Therefore although we do not re-derive from scratch the expressions that - can be found elsewhere in literature, we always state them explicitly in - our convention. + can be found elsewhere in literature, for reader's reference we always + state them explicitly in our convention. \end_layout \begin_layout Subsection @@ -137,7 +133,7 @@ Single-particle scattering \begin_layout Standard In order to define the basic concepts, let us first consider the case of - EM radiation scattered by a single particle. + electromagnetic (EM) radiation scattered by a single particle. We assume that the scatterer lies inside a closed ball \begin_inset Formula $\closedball{R^{<}}{\vect 0}$ \end_inset @@ -156,17 +152,7 @@ In order to define the basic concepts, let us first consider the case of \begin_inset Formula $\openball{R^{>}}{\vect 0}$ \end_inset -, such that -\begin_inset Marginal -status open - -\begin_layout Plain Layout -Is there a word for this? -\end_layout - -\end_inset - - the (non-empty) volume +, such that the (non-empty) spherical shell \begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}=\openball{R^{>}}{\vect 0}\setminus\closedball{R^{<}}{\vect 0}$ \end_inset @@ -187,14 +173,14 @@ ty \end_inset in -\begin_inset Formula $\medium$ +\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}$ \end_inset must satisfy the homogeneous vector Helmholtz equation together with the transversality condition \begin_inset Formula \begin{equation} -\left(\nabla^{2}+k^{2}\right)\Psi\left(\vect r,\vect{\omega}\right)=0,\quad\nabla\cdot\vect{\Psi}\left(\vect r,\vect{\omega}\right)=0\label{eq:Helmholtz eq} +\left(\nabla^{2}+\kappa^{2}\right)\Psi\left(\vect r,\vect{\omega}\right)=0,\quad\nabla\cdot\vect{\Psi}\left(\vect r,\vect{\omega}\right)=0\label{eq:Helmholtz eq} \end{equation} \end_inset @@ -233,19 +219,27 @@ todo define \end_inset with -\begin_inset Formula $k=k\left(\omega\right)=\omega\sqrt{\mubg(\omega)\epsbg(\omega)}/c_{0}$ +\begin_inset Formula $\kappa=\kappa\left(\omega\right)=\omega\sqrt{\mubg(\omega)\epsbg(\omega)}/c_{0}$ \end_inset -, as can be derived from the Maxwell's equations +, as can be derived from Maxwell's equations \begin_inset CommandInset citation LatexCommand cite -after "???" key "jackson_classical_1998" literal "false" \end_inset . +\begin_inset Note Note +status open + +\begin_layout Plain Layout +TODO ref to the chapter. +\end_layout + +\end_inset + \end_layout @@ -284,8 +278,8 @@ outgoing , respectively, defined as follows: \begin_inset Formula \begin{align} -\vswfrtlm 1lm\left(k\vect r\right) & =j_{l}\left(kr\right)\vsh 1lm\left(\uvec r\right),\nonumber \\ -\vswfrtlm 2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krj_{l}\left(kr\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(kr\right)}{kr}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF regular} +\vswfrtlm 1lm\left(k\vect r\right) & =j_{l}\left(\kappa r\right)\vsh 1lm\left(\uvec r\right),\nonumber \\ +\vswfrtlm 2lm\left(k\vect r\right) & =\frac{1}{\kappa r}\frac{\ud\left(\kappa rj_{l}\left(\kappa r\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(\kappa r\right)}{kr}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF regular} \end{align} \end_inset @@ -294,7 +288,7 @@ outgoing \begin_inset Formula \begin{align} \vswfouttlm 1lm\left(k\vect r\right) & =h_{l}^{\left(1\right)}\left(kr\right)\vsh 1lm\left(\uvec r\right),\nonumber \\ -\vswfouttlm 2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krh_{l}^{\left(1\right)}\left(kr\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{h_{l}^{\left(1\right)}\left(kr\right)}{kr}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF outgoing}\\ +\vswfouttlm 2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krh_{l}^{\left(1\right)}\left(\kappa r\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{h_{l}^{\left(1\right)}\left(\kappa r\right)}{\kappa r}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF outgoing}\\ & \tau=1,2;\quad l=1,2,3,\dots;\quad m=-l,-l+1,\dots,+l,\nonumber \end{align} @@ -494,7 +488,7 @@ noprefix "false" around the origin (typically due to presence of a scatterer), one has to add the outgoing VSWFs -\begin_inset Formula $\vswfrtlm{\tau}lm\left(k\vect r\right)$ +\begin_inset Formula $\vswfrtlm{\tau}lm\left(\kappa\vect r\right)$ \end_inset to have a complete basis of the solutions in the volume @@ -528,7 +522,7 @@ The single-particle scattering problem at frequency \end_inset be filled with a homogeneous isotropic medium with wave number -\begin_inset Formula $k\left(\omega\right)$ +\begin_inset Formula $\kappa\left(\omega\right)$ \end_inset . @@ -549,16 +543,16 @@ doplnit frekvence a polohy \begin_inset Formula \begin{equation} -\vect E\left(\omega,\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\left(\rcoefftlm{\tau}lm\vswfrtlm{\tau}lm\left(k\vect r\right)+\outcoefftlm{\tau}lm\vswfouttlm{\tau}lm\left(k\vect r\right)\right).\label{eq:E field expansion} +\vect E\left(\omega,\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\left(\rcoefftlm{\tau}lm\vswfrtlm{\tau}lm\left(\kappa\vect r\right)+\outcoefftlm{\tau}lm\vswfouttlm{\tau}lm\left(\kappa\vect r\right)\right).\label{eq:E field expansion} \end{equation} \end_inset -If there was no scatterer and +If there were no scatterer and \begin_inset Formula $\closedball{R^{<}}{\vect 0}$ \end_inset - was filled with the same homogeneous medium, the part with the outgoing + were filled with the same homogeneous medium, the part with the outgoing VSWFs would vanish and only the part \begin_inset Formula $\vect E_{\mathrm{inc}}=\sum_{\tau lm}\rcoefftlm{\tau}lm\vswfrtlm{\tau}lm$ \end_inset @@ -585,8 +579,8 @@ driving field \end_inset . - We also assume that the scatterer is made of optically linear materials, - and hence reacts on the incident field in a linear manner. + We also assume that the scatterer is made of optically linear materials + and hence reacts to the incident field in a linear manner. This gives a linearity constraint between the expansion coefficients \begin_inset Formula \begin{equation} @@ -614,8 +608,8 @@ transition matrix, \begin_inset Formula $T$ \end_inset --matrix, we can solve the single-patricle scatering prroblem simply by substitut -ing appropriate expansion coefficients +-matrix we can solve the single-patricle scatering prroblem simply by substituti +ng appropriate expansion coefficients \begin_inset Formula $\rcoefftlm{\tau'}{l'}{m'}$ \end_inset @@ -643,8 +637,8 @@ noprefix "false" \end_inset ) multipole polarisation amplitudes of the scatterer, and this is why we - sometimes refer to the corresponding VSWFs as the electric and magnetic - VSWFs. + sometimes refer to the corresponding VSWFs as to the electric and magnetic + VSWFs, respectively. \begin_inset Note Note status open @@ -705,8 +699,12 @@ literal "false" \end_inset , see below. - We typically use the scuff-tmatrix tool from the free software SCUFF-EM - suite + For the numerical evaluation of +\begin_inset Formula $T$ +\end_inset + +-matrices we typically use the scuff-tmatrix tool from the free software + SCUFF-EM suite \begin_inset CommandInset citation LatexCommand cite key "reid_efficient_2015,SCUFF2" @@ -979,7 +977,7 @@ noprefix "false" via by electromagnetic radiation is \begin_inset Formula \begin{equation} -P=\frac{1}{2k^{2}\eta_{0}\eta}\left(\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)+\left\Vert \outcoeffp{}\right\Vert ^{2}\right)=\frac{1}{2k^{2}\eta_{0}\eta}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}+\frac{\Tp{}^{\dagger}+\Tp{}}{2}\right)\rcoeffp{}.\label{eq:Power transport} +P=\frac{1}{2\kappa^{2}\eta_{0}\eta}\left(\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)+\left\Vert \outcoeffp{}\right\Vert ^{2}\right)=\frac{1}{2\kappa^{2}\eta_{0}\eta}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}+\frac{\Tp{}^{\dagger}+\Tp{}}{2}\right)\rcoeffp{}.\label{eq:Power transport} \end{equation} \end_inset @@ -1001,9 +999,9 @@ Plane wave expansion \begin_layout Standard In many scattering problems considered in practice, the driving field is - a plane wave. + at least approximately a plane wave. A transversal ( -\begin_inset Formula $\vect k\cdot\vect E_{0}=0$ +\begin_inset Formula $\uvec k\cdot\vect E_{0}=0$ \end_inset ) plane wave propagating in direction @@ -1017,7 +1015,7 @@ In many scattering problems considered in practice, the driving field is can be expanded into regular VSWFs \begin_inset CommandInset citation LatexCommand cite -after "7.???" +after "7.7.1" key "kristensson_scattering_2016" literal "false" @@ -1026,7 +1024,7 @@ literal "false" as \begin_inset Formula \[ -\vect E_{\mathrm{PW}}\left(\vect r,\omega\right)=\vect E_{0}e^{ik\uvec k\cdot\vect r}=\sum_{\tau,l,m}\rcoeffptlm{}{\tau}lm\left(\vect k,\vect E_{0}\right)\vswfrtlm{\tau}lm\left(k\vect r\right), +\vect E_{\mathrm{PW}}\left(\vect r,\omega\right)=\vect E_{0}e^{i\kappa\uvec k\cdot\vect r}=\sum_{\tau,l,m}\rcoeffptlm{}{\tau}lm\left(\uvec k,\vect E_{0}\right)\vswfrtlm{\tau}lm\left(\kappa\vect r\right), \] \end_inset @@ -1034,8 +1032,8 @@ literal "false" with expansion coefficients \begin_inset Formula \begin{eqnarray} -\rcoeffptlm{}1lm\left(\vect k,\vect E_{0}\right) & = & 4\pi i^{l}\vshD 1lm\left(\uvec k\right),\nonumber \\ -\rcoeffptlm{}2lm\left(\vect k,\vect E_{0}\right) & = & -4\pi i^{l+1}\vshD 2lm\left(\uvec k\right).\label{eq:plane wave expansion} +\rcoeffptlm{}1lm\left(\uvec k,\vect E_{0}\right) & = & 4\pi i^{l}\vshD 1lm\left(\uvec k\right),\nonumber \\ +\rcoeffptlm{}2lm\left(\uvec k,\vect E_{0}\right) & = & -4\pi i^{l+1}\vshD 2lm\left(\uvec k\right).\label{eq:plane wave expansion} \end{eqnarray} \end_inset @@ -1113,10 +1111,10 @@ literal "true" \begin_inset Formula \begin{eqnarray} -\sigma_{\mathrm{ext}}\left(\uvec k\right) & = & -\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)=-\frac{1}{2k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}+\Tp{}^{\dagger}\right)\rcoeffp{},\label{eq:extincion CS single}\\ -\sigma_{\mathrm{scat}}\left(\uvec k\right) & = & \frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\left\Vert \outcoeffp{}\right\Vert ^{2}=\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}\right)\rcoeffp{},\label{eq:scattering CS single}\\ -\sigma_{\mathrm{abs}}\left(\uvec k\right) & = & \sigma_{\mathrm{ext}}\left(\uvec k\right)-\sigma_{\mathrm{scat}}\left(\uvec k\right)=-\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\left(\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)+\left\Vert \outcoeffp{}\right\Vert ^{2}\right)\nonumber \\ - & & =\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}+\frac{\Tp{}^{\dagger}+\Tp{}}{2}\right)\rcoeffp{},\label{eq:absorption CS single} +\sigma_{\mathrm{ext}}\left(\uvec k\right) & = & -\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)=-\frac{1}{2\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}+\Tp{}^{\dagger}\right)\rcoeffp{},\label{eq:extincion CS single}\\ +\sigma_{\mathrm{scat}}\left(\uvec k\right) & = & \frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\left\Vert \outcoeffp{}\right\Vert ^{2}=\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}\right)\rcoeffp{},\label{eq:scattering CS single}\\ +\sigma_{\mathrm{abs}}\left(\uvec k\right) & = & \sigma_{\mathrm{ext}}\left(\uvec k\right)-\sigma_{\mathrm{scat}}\left(\uvec k\right)=-\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\left(\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)+\left\Vert \outcoeffp{}\right\Vert ^{2}\right)\nonumber \\ + & & =\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}+\frac{\Tp{}^{\dagger}+\Tp{}}{2}\right)\rcoeffp{},\label{eq:absorption CS single} \end{eqnarray} \end_inset @@ -1163,7 +1161,7 @@ If the system consists of multiple scatterers, the EM fields around each \begin_inset Formula $\closedball{R_{p}}{\vect r_{p}}\cap\closedball{R_{q}}{\vect r_{q}}=\emptyset;p,q\in\mathcal{P}$ \end_inset -, so there is a non-empty volume +, so there is a non-empty spherical shell \begin_inset Note Note status open @@ -1178,11 +1176,11 @@ jaksetometuje? \end_inset around each one that contains only the background medium without any scatterers - (we assume that all the volume outside +; we assume that all the relevant volume outside \begin_inset Formula $\bigcap_{p\in\mathcal{P}}\closedball{R_{p}}{\vect r_{p}}$ \end_inset - is filled with the same background medium). + is filled with the same background medium. Then the EM field inside each \begin_inset Formula $\mezikuli{R_{p}}{R_{p}^{>}}{\vect r_{p}}$ \end_inset @@ -1200,7 +1198,7 @@ noprefix "false" , using VSWFs with origins shifted to the centre of the volume: \begin_inset Formula \begin{align} -\vect E\left(\omega,\vect r\right) & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\left(\rcoeffptlm p{\tau}lm\vswfrtlm{\tau}lm\left(k\left(\vect r-\vect r_{p}\right)\right)+\outcoeffptlm p{\tau}lm\vswfouttlm{\tau}lm\left(k\left(\vect r-\vect r_{p}\right)\right)\right),\label{eq:E field expansion multiparticle}\\ +\vect E\left(\omega,\vect r\right) & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\left(\rcoeffptlm p{\tau}lm\vswfrtlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{p}\right)\right)+\outcoeffptlm p{\tau}lm\vswfouttlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{p}\right)\right)\right),\label{eq:E field expansion multiparticle}\\ & \vect r\in\mezikuli{R_{p}}{R_{p}^{>}}{\vect r_{p}}.\nonumber \end{align} @@ -1362,7 +1360,7 @@ In practice, the multiple-scattering problem is solved in its truncated -multiindices left. The truncation degree can vary for different scatterers (e.g. due to different physical sizes), so the truncated block -\begin_inset Formula $\tropsp pq$ +\begin_inset Formula $\left[\tropsp pq\right]_{l_{q}\le L_{q};l_{p}\le L_{q}}$ \end_inset has shape @@ -1493,7 +1491,7 @@ Let \begin_layout Standard \begin_inset Formula \begin{equation} -\vswfrtlm{\tau}lm\left(k\left(\vect r-\vect r_{1}\right)\right)=\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\vect r-\vect r_{2}\right),\label{eq:regular vswf translation} +\vswfrtlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{1}\right)\right)=\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\vect r-\vect r_{2}\right),\label{eq:regular vswf translation} \end{equation} \end_inset @@ -1519,9 +1517,9 @@ reference "eq:translation operator" : \begin_inset Formula \begin{eqnarray} -\vswfouttlm{\tau}lm\left(k\left(\vect r-\vect r_{1}\right)\right) & = & \begin{cases} -\sum_{\tau'l'm'}\trops_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfouttlm{\tau'}{l'}{m'}\left(\vect r-\vect r_{2}\right), & \vect r\in\openball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\vect r_{1}}\\ -\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\vect r-\vect r_{2}\right), & \vect r\notin\closedball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\left|\vect r_{1}\right|} +\vswfouttlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{1}\right)\right) & = & \begin{cases} +\sum_{\tau'l'm'}\trops_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfouttlm{\tau'}{l'}{m'}\left(\kappa\left(\vect r-\vect r_{2}\right)\right), & \vect r\in\openball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\vect r_{1}}\\ +\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\kappa\left(\vect r-\vect r_{2}\right)\right), & \vect r\notin\closedball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\left|\vect r_{1}\right|} \end{cases},\label{eq:singular vswf translation} \end{eqnarray} @@ -1590,7 +1588,7 @@ they , \begin_inset Formula \[ -\vect E\left(\vect r,\omega\right)=\sum_{\tau,l,m}\rcoeffptlm p{\tau}lm\vswfrtlm{\tau}lm\left(k\left(\vect r-\vect r_{p}\right)\right)=\sum_{\tau',l',m'}\rcoeffptlm q{\tau'}{l'}{m'}\vswfrtlm{\tau}{'l'}{m'}\left(k\left(\vect r-\vect r_{q}\right)\right). +\vect E\left(\vect r,\omega\right)=\sum_{\tau,l,m}\rcoeffptlm p{\tau}lm\vswfrtlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{p}\right)\right)=\sum_{\tau',l',m'}\rcoeffptlm q{\tau'}{l'}{m'}\vswfrtlm{\tau}{'l'}{m'}\left(\kappa\left(\vect r-\vect r_{q}\right)\right). \] \end_inset @@ -1613,7 +1611,7 @@ reference "eq:regular vswf translation" , \begin_inset Formula \[ -\vect E\left(\vect r,\omega\right)=\sum_{\tau,l,m}\rcoeffptlm p{\tau}lm\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{q}-\vect r_{p}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(k\left(\vect r-\vect r_{q}\right)\right) +\vect E\left(\vect r,\omega\right)=\sum_{\tau,l,m}\rcoeffptlm p{\tau}lm\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{q}-\vect r_{p}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\kappa\left(\vect r-\vect r_{q}\right)\right) \] \end_inset @@ -1625,7 +1623,7 @@ and comparing to the original expansion around , we obtain \begin_inset Formula \begin{equation} -\rcoeffptlm q{\tau'}{l'}{m'}=\sum_{\tau,l,m}\tropr_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{q}-\vect r_{p}\right)\right)\rcoeffptlm p{\tau}lm.\label{eq:regular vswf coefficient translation} +\rcoeffptlm q{\tau'}{l'}{m'}=\sum_{\tau,l,m}\tropr_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{q}-\vect r_{p}\right)\right)\rcoeffptlm p{\tau}lm.\label{eq:regular vswf coefficient translation} \end{equation} \end_inset @@ -2066,7 +2064,7 @@ literal "false" , we can describe the EM fields as if there was only a single scatterer, \begin_inset Formula \[ -\vect E\left(\vect r\right)=\sum_{\tau,l,m}\left(\rcoeffptlm{\square}{\tau}lm\vswfrtlm{\tau}lm\left(\vect r-\vect r_{\square}\right)+\outcoeffptlm{\square}{\tau}lm\vswfouttlm{\tau}lm\left(\vect r-\vect r_{\square}\right)\right), +\vect E\left(\vect r\right)=\sum_{\tau,l,m}\left(\rcoeffptlm{\square}{\tau}lm\vswfrtlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{\square}\right)\right)+\outcoeffptlm{\square}{\tau}lm\vswfouttlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{\square}\right)\right)\right), \] \end_inset @@ -2252,10 +2250,10 @@ noprefix "false" cross sections suitable for numerical evaluation: \begin_inset Formula \begin{eqnarray} -\sigma_{\mathrm{ext}}\left(\uvec k\right) & = & -\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\sum_{p\in\mathcal{P}}\rcoeffincp p^{\dagger}\outcoeffp p=-\frac{1}{2k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\sum_{p\in\mathcal{P}}\rcoeffincp p^{\dagger}\left(\Tp p+\Tp p^{\dagger}\right)\rcoeffp p,\label{eq:extincion CS multi}\\ -\sigma_{\mathrm{scat}}\left(\uvec k\right) & = & \frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\outcoeffp p^{\dagger}\troprp pq\outcoeffp q\nonumber \\ - & & =\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\rcoeffp p^{\dagger}\Tp p^{\dagger}\troprp pq\Tp q\rcoeffp q,\label{eq:scattering CS multi}\\ -\sigma_{\mathrm{abs}}\left(\uvec k\right) & = & -\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffincp p+\sum_{q\in\mathcal{P}}\troprp pq\outcoeffp q\right)\right).\nonumber \\ +\sigma_{\mathrm{ext}}\left(\uvec k\right) & = & -\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\sum_{p\in\mathcal{P}}\rcoeffincp p^{\dagger}\outcoeffp p=-\frac{1}{2k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\sum_{p\in\mathcal{P}}\rcoeffincp p^{\dagger}\left(\Tp p+\Tp p^{\dagger}\right)\rcoeffp p,\label{eq:extincion CS multi}\\ +\sigma_{\mathrm{scat}}\left(\uvec k\right) & = & \frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\outcoeffp p^{\dagger}\troprp pq\outcoeffp q\nonumber \\ + & & =\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\rcoeffp p^{\dagger}\Tp p^{\dagger}\troprp pq\Tp q\rcoeffp q,\label{eq:scattering CS multi}\\ +\sigma_{\mathrm{abs}}\left(\uvec k\right) & = & -\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffincp p+\sum_{q\in\mathcal{P}}\troprp pq\outcoeffp q\right)\right).\nonumber \\ \label{eq:absorption CS multi} \end{eqnarray} @@ -2321,7 +2319,7 @@ noprefix "false" particle-wise gives \begin_inset Formula \begin{equation} -\sigma_{\mathrm{abs}}\left(\uvec k\right)=-\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\left(\Re\left(\rcoeffp p^{\dagger}\outcoeffp p\right)+\left\Vert \outcoeffp p\right\Vert ^{2}\right)\label{eq:absorption CS multi alternative} +\sigma_{\mathrm{abs}}\left(\uvec k\right)=-\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\left(\Re\left(\rcoeffp p^{\dagger}\outcoeffp p\right)+\left\Vert \outcoeffp p\right\Vert ^{2}\right)\label{eq:absorption CS multi alternative} \end{equation} \end_inset @@ -2349,8 +2347,8 @@ noprefix "false" , we can rewrite it as \begin_inset Formula \begin{align*} -\sigma_{\mathrm{abs}}\left(\uvec k\right) & =-\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffp p+\outcoeffp p\right)\right)\\ - & =-\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffincp p+\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\tropsp pq\outcoeffp q+\outcoeffp p\right)\right). +\sigma_{\mathrm{abs}}\left(\uvec k\right) & =-\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffp p+\outcoeffp p\right)\right)\\ + & =-\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffincp p+\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\tropsp pq\outcoeffp q+\outcoeffp p\right)\right). \end{align*} \end_inset diff --git a/lepaper/infinite.lyx b/lepaper/infinite.lyx index 872340e..e67fd4d 100644 --- a/lepaper/infinite.lyx +++ b/lepaper/infinite.lyx @@ -605,7 +605,7 @@ reference "eq:W definition" \end_inset is the asymptotic behaviour of the translation operator, -\begin_inset Formula $\tropsp{\vect 0,\alpha}{\vect m,\beta}\sim\left|\vect R_{\vect b}\right|^{-1}e^{ik_{0}\left|\vect R_{\vect b}\right|}$ +\begin_inset Formula $\tropsp{\vect 0,\alpha}{\vect m,\beta}\sim\left|\vect R_{\vect m}\right|^{-1}e^{i\kappa\left|\vect R_{\vect m}\right|}$ \end_inset that does not in the strict sense converge for any @@ -831,8 +831,8 @@ Check sign of s \begin_layout Standard \begin_inset Formula \begin{multline} -\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)=-\frac{2^{l+1}i}{k^{l+1}\sqrt{\pi}}\sum_{\vect n\in\ints^{d}}\left(1-\delta_{\vect{R_{n}},-\vect s}\right)\left|\vect{R_{n}+\vect s}\right|^{l}\ush lm\left(\vect{R_{n}+\vect s}\right)e^{i\vect k\cdot\left(\vect{R_{n}+\vect s}\right)}\int_{\eta}^{\infty}e^{-\left|\vect{R_{n}+\vect s}\right|^{2}\xi^{2}}e^{-k/4\xi^{2}}\xi^{2l}\ud\xi\\ -+\frac{\delta_{l0}\delta_{m0}}{\sqrt{4\pi}}\Gamma\left(-\frac{1}{2},-\frac{k}{4\eta^{2}}\right)\ush lm\left(\vect{R_{n}+\vect s}\right),\label{eq:Ewald in 3D short-range part} +\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)=-\frac{2^{l+1}i}{\kappa^{l+1}\sqrt{\pi}}\sum_{\vect n\in\ints^{d}}\left(1-\delta_{\vect{R_{n}},-\vect s}\right)\left|\vect{R_{n}+\vect s}\right|^{l}\ush lm\left(\vect{R_{n}+\vect s}\right)e^{i\vect k\cdot\left(\vect{R_{n}+\vect s}\right)}\int_{\eta}^{\infty}e^{-\left|\vect{R_{n}+\vect s}\right|^{2}\xi^{2}}e^{-\kappa/4\xi^{2}}\xi^{2l}\ud\xi\\ ++\frac{\delta_{l0}\delta_{m0}}{\sqrt{4\pi}}\Gamma\left(-\frac{1}{2},-\frac{\kappa}{4\eta^{2}}\right)\ush lm\left(\vect{R_{n}+\vect s}\right),\label{eq:Ewald in 3D short-range part} \end{multline} \end_inset @@ -861,26 +861,6 @@ Poznámka ohledně zahození radiální části u kulových fcí? \end_inset - -\begin_inset Marginal -status open - -\begin_layout Plain Layout -N.B. - here -\begin_inset Formula $\vect k$ -\end_inset - - is the Bloch vector while -\begin_inset Formula $k$ -\end_inset - - is the wavenumber. - Relabel to make this distinction clear. -\end_layout - -\end_inset - The long-range part for cases \begin_inset Formula $d=1,2$ \end_inset @@ -902,8 +882,8 @@ check sign of \begin_inset Formula \begin{multline} -\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)=-\frac{i^{l+1}}{k^{d}\mathcal{A}}\pi^{2+\left(3-d\right)/2}2\left(\left(l-m\right)/2\right)!\left(\left(l+m\right)/2\right)!\times\\ -\times\sum_{\vect K\in\Lambda^{*}}\ush lm\left(\vect k+\vect K\right)\sum_{j=0}^{\left[\left(l-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\left|\vect k+\vect K\right|/k\right)^{l-2j}\Gamma\left(-j,\frac{k^{2}\gamma\left(\left|\vect k+\vect K\right|/k\right)}{4\eta^{2}}\right)}{j!\left(\frac{1}{2}\left(l-m\right)-j\right)!\left(\frac{1}{2}\left(l+m\right)-j\right)!}\left(\gamma\left(\left|\vect k+\vect K\right|/k\right)\right)^{2j+3-d}\label{eq:Ewald in 3D long-range part 1D 2D} +\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)=-\frac{i^{l+1}}{\kappa^{d}\mathcal{A}}\pi^{2+\left(3-d\right)/2}2\left(\left(l-m\right)/2\right)!\left(\left(l+m\right)/2\right)!\times\\ +\times\sum_{\vect K\in\Lambda^{*}}\ush lm\left(\vect k+\vect K\right)\sum_{j=0}^{\left[\left(l-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\left|\vect k+\vect K\right|/\kappa\right)^{l-2j}\Gamma\left(-j,\frac{k^{2}\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)}{4\eta^{2}}\right)}{j!\left(\frac{1}{2}\left(l-m\right)-j\right)!\left(\frac{1}{2}\left(l+m\right)-j\right)!}\left(\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)\right)^{2j+3-d}\label{eq:Ewald in 3D long-range part 1D 2D} \end{multline} \end_inset @@ -915,7 +895,7 @@ and for \begin_inset Formula \begin{equation} -\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)=\frac{4\pi i^{l+1}}{k\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}\frac{\left(\left|\vect k+\vect K\right|/k\right)^{l}}{k^{2}-\left|\vect k+\vect K\right|^{2}}e^{\left(k^{2}-\left|\vect k+\vect K\right|^{2}\right)/4\eta^{2}}\ush lm\left(\vect k+\vect K\right).\label{eq:Ewald in 3D long-range part 3D} +\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)=\frac{4\pi i^{l+1}}{\kappa\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}\frac{\left(\left|\vect k+\vect K\right|/\kappa\right)^{l}}{\kappa^{2}-\left|\vect k+\vect K\right|^{2}}e^{\left(\kappa^{2}-\left|\vect k+\vect K\right|^{2}\right)/4\eta^{2}}\ush lm\left(\vect k+\vect K\right).\label{eq:Ewald in 3D long-range part 3D} \end{equation} \end_inset diff --git a/lepaper/intro.lyx b/lepaper/intro.lyx index a55bf4c..757ec3a 100644 --- a/lepaper/intro.lyx +++ b/lepaper/intro.lyx @@ -107,7 +107,16 @@ name "sec:Introduction" \begin_layout Standard The problem of electromagnetic response of a system consisting of many relativel y small, compact scatterers in various geometries, and its numerical solution, - is relevant to many branches of nanophotonics (TODO refs). + is relevant to many branches of nanophotonics. +\begin_inset Marginal +status open + +\begin_layout Plain Layout +Some refs here? +\end_layout + +\end_inset + The most commonly used general approaches used in computational electrodynamics are often unsuitable for simulating systems with larger number of scatterers due to their computational complexity: differential methods such as the @@ -118,7 +127,7 @@ y small, compact scatterers in various geometries, and its numerical solution, with dense matrices containing couplings between each pair of DoF. Therefore, a common (frequency-domain) approach to get an approximate solution of the scattering problem for many small particles has been the coupled - dipole approximation (CDA) where drastic reduction of the number of DoF + dipole approximation (CDA) where a drastic reduction of the number of DoF is achieved by approximating individual scatterers to electric dipoles (characterised by a polarisability tensor) coupled to each other through Green's functions. @@ -133,8 +142,8 @@ CDA is easy to implement and demands relatively little computational resources to quantitative errors. The other one, more subtle, manifests itself in photonic crystal-like structure s used in nanophotonics: there are modes in which the particles' electric - dipole moments completely vanish due to symmetry, regardless of how small - the particles are, and the excitations have quadrupolar or higher-degree + dipole moments completely vanish due to symmetry, and regardless of how + small the particles are, the excitations have quadrupolar or higher-degree multipolar character. These modes typically appear at the band edges where interesting phenomena such as lasing or Bose-Einstein condensation have been observed @@ -152,13 +161,13 @@ literal "false" The natural way to overcome both limitations of CDA mentioned above is to include higher multipoles into account. Instead of polarisability tensor, the scattering properties of an individual - particle are then described a more general + particle are then described with more general \begin_inset Formula $T$ \end_inset -matrix, and different particles' multipole excitations are coupled together - via translation operators, a generalisation of the Green's functions in - CDA. + via translation operators, a generalisation of the Green's functions used + in CDA. This is the idea behind the \emph on multiple-scattering @@ -227,8 +236,8 @@ literal "false" During the process, it became apparent that although the size of the arrays we were able to simulate with MSTMM was far larger than with other methods, sometimes we were unable to match the full size of our physical arrays - (typically consisting of tens of thousands of metallic nanoparticles) due - to memory constraints. + (typically consisting of tens of thousands of metallic nanoparticles) mainly + due to memory constraints. Moreover, to distinguish the effects attributable to the finite size of the arrays, it became desirable to simulate also \emph on @@ -247,7 +256,7 @@ Here we address both challenges: we extend the method on infinite periodic of the system to decompose the problem into several substantially smaller ones, which 1) reduces the demands on computational resources, hence speeds up the computations and allows for simulations of larger systems, and 2) - provides better understanding of modes in periodic systems. + provides better understanding of modes, mainly in periodic systems. \end_layout \begin_layout Standard @@ -273,8 +282,8 @@ TODO refs to the code repositories once it is published. s. Moreover, it includes the improvements covered in this paper, enabling to simulate even larger systems and also infinite structures with periodicity - in one, two or three dimensions, which can be e.g. - used for quickly evaluating dispersions of such structures + in one, two or three dimensions, which can be used e.g. + for quickly evaluating dispersions of such structures \begin_inset Marginal status open @@ -327,7 +336,7 @@ reference "sec:Infinite" \end_inset we develop the theory for infinite periodic structures. - In section + In Section \begin_inset CommandInset ref LatexCommand ref reference "sec:Symmetries" @@ -339,7 +348,7 @@ noprefix "false" we apply group theory on MSTMM to utilise the symmetries of the simulated system. - Finally, section + Finally, Section \begin_inset CommandInset ref LatexCommand ref reference "sec:Applications" diff --git a/lepaper/symmetries.lyx b/lepaper/symmetries.lyx index d67a63a..f407326 100644 --- a/lepaper/symmetries.lyx +++ b/lepaper/symmetries.lyx @@ -473,7 +473,7 @@ noprefix "false" of the electric field around origin in a rotated/reflected system, \begin_inset Formula \[ -\left(\groupop g\vect E\right)\left(\omega,\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\vect r\right)+\outcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\vect r\right)\right), +\left(\groupop g\vect E\right)\left(\omega,\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(\kappa\vect r\right)+\outcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(\kappa\vect r\right)\right), \] \end_inset @@ -595,8 +595,8 @@ Check this carefully. \begin_inset Formula \begin{multline} -\left(\groupop g\vect E\right)\left(\omega,\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)\right.+\\ -+\left.\outcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)\right).\label{eq:rotated E field expansion around outside origin} +\left(\groupop g\vect E\right)\left(\omega,\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(\kappa\left(\vect r-R_{g}\vect r_{p}\right)\right)\right.+\\ ++\left.\outcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(\kappa\left(\vect r-R_{g}\vect r_{p}\right)\right)\right).\label{eq:rotated E field expansion around outside origin} \end{multline} \end_inset @@ -750,12 +750,12 @@ With these transformation properties in hand, we can proceed to the effects \begin_inset Formula \begin{align*} -\left(\groupop g\vect E\right)\left(\omega,\vect r\right) & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)\right.+\\ - & \quad+\left.\outcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)\right)\\ - & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{\pi_{g}p}\right)\right)\right.\\ - & \quad+\left.\outcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{\pi_{g}p}\right)\right)\right)\\ - & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm{\pi_{g}^{-1}q}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{q}\right)\right)\right.\\ - & \quad+\left.\outcoeffptlm{\pi_{g}^{-1}q}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{q}\right)\right)\right) +\left(\groupop g\vect E\right)\left(\omega,\vect r\right) & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(\kappa\left(\vect r-R_{g}\vect r_{p}\right)\right)\right.+\\ + & \quad+\left.\outcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(\kappa\left(\vect r-R_{g}\vect r_{p}\right)\right)\right)\\ + & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(\kappa\left(\vect r-\vect r_{\pi_{g}p}\right)\right)\right.\\ + & \quad+\left.\outcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(\kappa\left(\vect r-\vect r_{\pi_{g}p}\right)\right)\right)\\ + & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm{\pi_{g}^{-1}q}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(\kappa\left(\vect r-\vect r_{q}\right)\right)\right.\\ + & \quad+\left.\outcoeffptlm{\pi_{g}^{-1}q}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(\kappa\left(\vect r-\vect r_{q}\right)\right)\right) \end{align*} \end_inset