More Päivi's suggestions implemented.
Former-commit-id: f391fdb73b126a241e3900d5282841f03abd5fb0
This commit is contained in:
parent
8942753a13
commit
0e45ae0d05
|
@ -76,6 +76,14 @@
|
|||
series = {Artech {{House Antennas}} and {{Propagation Library}}}
|
||||
}
|
||||
|
||||
@book{condon_theory_1935,
|
||||
title = {The {{Theory}} of {{Atomic Spectra}}},
|
||||
author = {Condon, E. U. and Shortley, G. H.},
|
||||
year = {1935},
|
||||
publisher = {{Cambridge University Press}},
|
||||
isbn = {978-0-521-09209-8}
|
||||
}
|
||||
|
||||
@article{dellnitz_locating_2002,
|
||||
title = {Locating All the Zeros of an Analytic Function in One Complex Variable},
|
||||
author = {Dellnitz, Michael and Sch{\"u}tze, Oliver and Zheng, Qinghua},
|
||||
|
@ -945,6 +953,13 @@ matrix method for multilayer calculations.},
|
|||
number = {4}
|
||||
}
|
||||
|
||||
@misc{SCUFF/MMN,
|
||||
title = {{{SCUFF}}-{{EM}}},
|
||||
author = {Reid, Homer},
|
||||
year = {2018},
|
||||
note = {https://github.com/texnokrates/scuff-em}
|
||||
}
|
||||
|
||||
@misc{SCUFF2,
|
||||
title = {{{SCUFF}}-{{EM}}},
|
||||
author = {Reid, Homer},
|
||||
|
@ -1147,6 +1162,16 @@ matrix method for multilayer calculations.},
|
|||
number = {8}
|
||||
}
|
||||
|
||||
@book{wigner_group_1959,
|
||||
title = {Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra},
|
||||
author = {Wigner, Eugene P. and Griffin, J. J.},
|
||||
year = {1959},
|
||||
edition = {Revised},
|
||||
publisher = {{Academic Press}},
|
||||
file = {/home/mmn/.zotero/zotero/w4aj0ekp.default/zotero/storage/8T5VQVHL/Group theory and its application to the quantum mechanics of atomic spectra by Eugene P. Wigner, J. J. Griffin (z-lib.org).djvu},
|
||||
isbn = {978-0-12-750550-3}
|
||||
}
|
||||
|
||||
@article{xu_calculation_1996,
|
||||
title = {Calculation of the {{Addition Coefficients}} in {{Electromagnetic Multisphere}}-{{Scattering Theory}}},
|
||||
author = {Xu, Yu-lin},
|
||||
|
|
|
@ -2205,9 +2205,9 @@ noprefix "false"
|
|||
|
||||
, taking the sums over scatterers inside one unit cell, to get the extinction
|
||||
and absorption cross sections per unit cell.
|
||||
From these, quantities such as absorption, extinction coefficients are
|
||||
obtained using suitable normalisation by unit cell size, depending on lattice
|
||||
dimensionality.
|
||||
From these, quantities such as absorption, extinction and scattering coefficien
|
||||
ts are obtained using suitable normalisation by unit cell size, depending
|
||||
on lattice dimensionality.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
|
|
@ -207,11 +207,11 @@ TODO Zkontrolovat všechny vzorečky zde!!!
|
|||
|
||||
In order to make use of the point group symmetries, we first need to know
|
||||
how they affect our basis functions, i.e.
|
||||
the VSWFs.
|
||||
\end_layout
|
||||
\begin_inset space \space{}
|
||||
\end_inset
|
||||
|
||||
\begin_layout Standard
|
||||
Let
|
||||
the VSWFs.
|
||||
Let
|
||||
\begin_inset Formula $g$
|
||||
\end_inset
|
||||
|
||||
|
@ -220,8 +220,10 @@ Let
|
|||
\end_inset
|
||||
|
||||
, i.e.
|
||||
a 3D point rotation or reflection operation that transforms vectors in
|
||||
\begin_inset space \space{}
|
||||
\end_inset
|
||||
|
||||
a 3D point rotation or reflection operation that transforms vectors in
|
||||
\begin_inset Formula $\reals^{3}$
|
||||
\end_inset
|
||||
|
||||
|
@ -281,8 +283,8 @@ Spherical harmonics
|
|||
, transform as
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "???"
|
||||
key "dresselhaus_group_2008"
|
||||
after "Chapter 15"
|
||||
key "wigner_group_1959"
|
||||
literal "false"
|
||||
|
||||
\end_inset
|
||||
|
@ -429,11 +431,11 @@ noprefix "false"
|
|||
|
||||
\end_inset
|
||||
|
||||
(and analogously for the regular waves
|
||||
and analogously for the regular waves
|
||||
\begin_inset Formula $\vswfrtlm{\tau}lm$
|
||||
\end_inset
|
||||
|
||||
).
|
||||
.
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
@ -767,7 +769,7 @@ With these transformation properties in hand, we can proceed to the effects
|
|||
& =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(\kappa\left(\vect r-\vect r_{\pi_{g}p}\right)\right)\right.\\
|
||||
& \quad+\left.\outcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(\kappa\left(\vect r-\vect r_{\pi_{g}p}\right)\right)\right)\\
|
||||
& =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm{\pi_{g}^{-1}q}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(\kappa\left(\vect r-\vect r_{q}\right)\right)\right.\\
|
||||
& \quad+\left.\outcoeffptlm{\pi_{g}^{-1}q}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(\kappa\left(\vect r-\vect r_{q}\right)\right)\right)
|
||||
& \quad+\left.\outcoeffptlm{\pi_{g}^{-1}q}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(\kappa\left(\vect r-\vect r_{q}\right)\right)\right).
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
@ -799,7 +801,11 @@ For a given particle
|
|||
\begin_inset Formula $p$
|
||||
\end_inset
|
||||
|
||||
, i.e.
|
||||
,
|
||||
\begin_inset space \space{}
|
||||
\end_inset
|
||||
|
||||
i.e.
|
||||
the set
|
||||
\begin_inset Formula $\left\{ \pi_{g}\left(p\right);g\in G\right\} $
|
||||
\end_inset
|
||||
|
@ -853,7 +859,17 @@ noprefix "false"
|
|||
|
||||
\end_inset
|
||||
|
||||
(TODO avoid notation clash here in a more consistent and readable way!)
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
(TODO avoid notation clash here in a more consistent and readable way!)
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{align}
|
||||
\rcoeffp p & \overset{g}{\longmapsto}\tilde{J}\left(g\right)\rcoeffp{\pi_{g}^{-1}(p)},\nonumber \\
|
||||
|
@ -942,7 +958,7 @@ ing problem matrix
|
|||
\begin_inset Formula $G$
|
||||
\end_inset
|
||||
|
||||
consisting of matrices
|
||||
consisting of matrices
|
||||
\begin_inset Formula $D^{\Gamma_{n}}\left(g\right)$
|
||||
\end_inset
|
||||
|
||||
|
@ -1050,7 +1066,7 @@ literal "false"
|
|||
or
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "???"
|
||||
after "Chapter 2"
|
||||
key "bradley_mathematical_1972"
|
||||
literal "false"
|
||||
|
||||
|
@ -1187,6 +1203,9 @@ Also for periodic systems,
|
|||
\end_inset
|
||||
|
||||
from the left hand side of eqs.
|
||||
\begin_inset space \space{}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
|
@ -1230,7 +1249,7 @@ s happens unless
|
|||
lies somewhere in the high-symmetry parts of the Brillouin zone.
|
||||
However, the high-symmetry points are usually the ones of the highest physical
|
||||
interest, for it is where the band edges are typically located.
|
||||
The subsection does not aim for an exhaustive treatment of the topic of
|
||||
This subsection does not aim for an exhaustive treatment of the topic of
|
||||
space groups in physics (which can be found elsewhere
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
|
@ -1414,6 +1433,9 @@ The transformation to the symmetry adapted basis
|
|||
: this can happen if the point group symmetry maps some of the scatterers
|
||||
from the reference unit cell to scatterers belonging to other unit cells.
|
||||
This is illustrated in Fig.
|
||||
\begin_inset space \space{}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
|
@ -1426,6 +1448,9 @@ noprefix "false"
|
|||
|
||||
.
|
||||
Fig.
|
||||
\begin_inset space \space{}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
|
@ -1449,21 +1474,21 @@ a shows a hexagonal periodic array with
|
|||
\end_inset
|
||||
|
||||
.
|
||||
If we delimit our representative unit cell as the Wigner-Seitz cell with
|
||||
origin in a
|
||||
We delimit our representative unit cell as the Wigner-Seitz cell with origin
|
||||
in a
|
||||
\begin_inset Formula $D_{6}$
|
||||
\end_inset
|
||||
|
||||
point group symmetry center (there is one per each unit cell).
|
||||
Per unit cell, there are five different particles placed on the unit cell
|
||||
boundary, and we need to make a choice to which unit cell the particles
|
||||
on the boundary belong; in our case, we choose that a unit cell includes
|
||||
the particles on the left as denoted by different colors.
|
||||
point group symmetry center (there is one per each unit cell); per unit
|
||||
cell, there are five different particles placed on the unit cell boundary,
|
||||
and we need to make a choice to which unit cell the particles on the boundary
|
||||
belong; in our case, we choose that a unit cell includes the particles
|
||||
on the left as denoted by different colors.
|
||||
If the Bloch vector is at the upper
|
||||
\begin_inset Formula $M$
|
||||
\end_inset
|
||||
|
||||
point,
|
||||
point,
|
||||
\begin_inset Formula $\vect k=\vect M_{1}=\left(0,2\pi/\sqrt{3}a\right)$
|
||||
\end_inset
|
||||
|
||||
|
@ -1503,6 +1528,9 @@ horizontal
|
|||
\end_inset
|
||||
|
||||
as in eq.
|
||||
\begin_inset space \space{}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
|
@ -1577,7 +1605,7 @@ If we set instead
|
|||
\begin_inset Formula $\vect k=\vect K=\left(4\pi/3a,0\right),$
|
||||
\end_inset
|
||||
|
||||
the original
|
||||
the original
|
||||
\begin_inset Formula $D_{6}$
|
||||
\end_inset
|
||||
|
||||
|
|
Loading…
Reference in New Issue