diff --git a/lepaper/finite.lyx b/lepaper/finite.lyx index 00cc2eb..731d0cb 100644 --- a/lepaper/finite.lyx +++ b/lepaper/finite.lyx @@ -968,6 +968,13 @@ reference "eq:plane wave expansion" \begin_layout Subsection Multiple scattering +\begin_inset CommandInset label +LatexCommand label +name "subsec:Multiple-scattering" + +\end_inset + + \end_layout \begin_layout Standard diff --git a/lepaper/infinite.lyx b/lepaper/infinite.lyx index 12f7ebd..2f1811c 100644 --- a/lepaper/infinite.lyx +++ b/lepaper/infinite.lyx @@ -95,6 +95,16 @@ \begin_layout Section Infinite periodic systems +\begin_inset FormulaMacro +\newcommand{\dlv}{\vect b} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\rlv}{\vect b} +\end_inset + + \end_layout \begin_layout Standard @@ -121,13 +131,43 @@ Topology anoyne? scatterer arrays. \end_layout +\begin_layout Subsection +Notation +\end_layout + \begin_layout Subsection Formulation of the problem \end_layout \begin_layout Standard -Assume a system of compact EM scatterers in otherwise homogeneous and isotropic - medium, and assume that the system, i.e. +Let us have a linear system of compact EM scatterers on a homogeneous background + as in Section +\begin_inset CommandInset ref +LatexCommand eqref +reference "subsec:Multiple-scattering" +plural "false" +caps "false" +noprefix "false" + +\end_inset + +, but this time, system shall be periodic: let there be a +\begin_inset Formula $d$ +\end_inset + +-dimensional ( +\begin_inset Formula $d$ +\end_inset + + can be 1, 2 or 3) lattice embedded into the three-dimensional real space, + with lattice vectors. + set of +\begin_inset Formula $d$ +\end_inset + + (one to three) lattice vectorsAssume a system of compact EM scatterers + in otherwise homogeneous and isotropic medium, and assume that the system, + i.e. both the medium and the scatterers, have linear response. A scattering problem in such system can be written as \begin_inset Formula @@ -216,9 +256,9 @@ and we assume periodic solution \begin_inset Formula \begin{eqnarray*} \sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{α}S_{\vect aα\leftarrow\vect bβ})A_{\vect a\beta}\left(\vect k\right)e^{i\vect k\cdot\vect r_{\vect b-\vect a}} & = & 0,\\ -\sum_{\vect bβ}(\delta_{\vect{0b}}\delta_{αβ}-T_{α}S_{\vect0α\leftarrow\vect bβ})A_{\vect0\beta}\left(\vect k\right)e^{i\vect k\cdot\vect r_{\vect b}} & = & 0,\\ -\sum_{β}(\delta_{αβ}-T_{α}\underbrace{\sum_{\vect b}S_{\vect0α\leftarrow\vect bβ}e^{i\vect k\cdot\vect r_{\vect b}}}_{W_{\alpha\beta}(\vect k)})A_{\vect0\beta}\left(\vect k\right) & = & 0,\\ -A_{\vect0\alpha}\left(\vect k\right)-T_{α}\sum_{\beta}W_{\alpha\beta}\left(\vect k\right)A_{\vect0\beta}\left(\vect k\right) & = & 0. +\sum_{\vect bβ}(\delta_{\vect{0b}}\delta_{αβ}-T_{α}S_{\vect 0α\leftarrow\vect bβ})A_{\vect 0\beta}\left(\vect k\right)e^{i\vect k\cdot\vect r_{\vect b}} & = & 0,\\ +\sum_{β}(\delta_{αβ}-T_{α}\underbrace{\sum_{\vect b}S_{\vect 0α\leftarrow\vect bβ}e^{i\vect k\cdot\vect r_{\vect b}}}_{W_{\alpha\beta}(\vect k)})A_{\vect 0\beta}\left(\vect k\right) & = & 0,\\ +A_{\vect 0\alpha}\left(\vect k\right)-T_{α}\sum_{\beta}W_{\alpha\beta}\left(\vect k\right)A_{\vect 0\beta}\left(\vect k\right) & = & 0. \end{eqnarray*} \end_inset @@ -234,7 +274,7 @@ lattice Fourier transform of the translation operator, \begin_inset Formula \begin{equation} -W_{\alpha\beta}(\vect k)\equiv\sum_{\vect b}S_{\vect0α\leftarrow\vect bβ}e^{i\vect k\cdot\vect r_{\vect b}}.\label{eq:W definition} +W_{\alpha\beta}(\vect k)\equiv\sum_{\vect b}S_{\vect 0α\leftarrow\vect bβ}e^{i\vect k\cdot\vect r_{\vect b}}.\label{eq:W definition} \end{equation} \end_inset @@ -255,7 +295,7 @@ reference "eq:W definition" \end_inset is the asymptotic behaviour of the translation operator, -\begin_inset Formula $S_{\vect0α\leftarrow\vect bβ}\sim\left|\vect r_{\vect b}\right|^{-1}e^{ik_{0}\left|\vect r_{\vect b}\right|}$ +\begin_inset Formula $S_{\vect 0α\leftarrow\vect bβ}\sim\left|\vect r_{\vect b}\right|^{-1}e^{ik_{0}\left|\vect r_{\vect b}\right|}$ \end_inset that makes the convergence of the sum quite problematic for any @@ -295,7 +335,7 @@ reference "eq:W definition" in terms of integral with a delta comb \begin_inset FormulaMacro -\newcommand{\basis}[1]{\mathfrak{#1}} +\renewcommand{\basis}[1]{\mathfrak{#1}} \end_inset @@ -351,7 +391,7 @@ translation operator for spherical waves originating in \end_inset is in fact a function of a single 3d argument, -\begin_inset Formula $S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})=S(\vect0\leftarrow\vect r+\vect r_{\beta}-\vect r_{\alpha})=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0)=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha})$ +\begin_inset Formula $S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})=S(\vect 0\leftarrow\vect r+\vect r_{\beta}-\vect r_{\alpha})=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha})$ \end_inset . @@ -365,7 +405,7 @@ reference "eq:W integral" can be rewritten as \begin_inset Formula \[ -W_{\alpha\beta}(\vect k)=\left(2\pi\right)^{\frac{d}{2}}\uaft{(\dc{\basis u}S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0))\left(\vect k\right)} +W_{\alpha\beta}(\vect k)=\left(2\pi\right)^{\frac{d}{2}}\uaft{(\dc{\basis u}S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0))\left(\vect k\right)} \] \end_inset @@ -390,10 +430,10 @@ reference "eq:Dirac comb uaFt" for the Fourier transform of Dirac comb) \begin_inset Formula \begin{eqnarray} -W_{\alpha\beta}(\vect k) & = & \left(\left(\uaft{\dc{\basis u}}\right)\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0)}\right)\right)(\vect k)\nonumber \\ - & = & \frac{\left|\det\recb{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\left(\dc{\recb{\basis u}}^{(d)}\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0)}\right)\right)\left(\vect k\right)\nonumber \\ - & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0)}\right)\left(\vect k-\vect K\right)\label{eq:W sum in reciprocal space}\\ - & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}e^{i\left(\vect k-\vect K\right)\cdot\left(-\vect r_{\beta}+\vect r_{\alpha}\right)}\left(\uaft{S(\vect{\bullet}\leftarrow\vect0)}\right)\left(\vect k-\vect K\right)\nonumber +W_{\alpha\beta}(\vect k) & = & \left(\left(\uaft{\dc{\basis u}}\right)\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\right)(\vect k)\nonumber \\ + & = & \frac{\left|\det\recb{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\left(\dc{\recb{\basis u}}^{(d)}\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\right)\left(\vect k\right)\nonumber \\ + & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right)\label{eq:W sum in reciprocal space}\\ + & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}e^{i\left(\vect k-\vect K\right)\cdot\left(-\vect r_{\beta}+\vect r_{\alpha}\right)}\left(\uaft{S(\vect{\bullet}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right)\nonumber \end{eqnarray} \end_inset @@ -495,8 +535,8 @@ reference "eq:W sum in reciprocal space" \begin_inset Formula \begin{eqnarray} W_{\alpha\beta}\left(\vect k\right) & = & W_{\alpha\beta}^{\textup{S}}\left(\vect k\right)+W_{\alpha\beta}^{\textup{L}}\left(\vect k\right)\nonumber \\ -W_{\alpha\beta}^{\textup{S}}\left(\vect k\right) & = & \sum_{\vect R\in\basis u\ints^{d}}S^{\textup{S}}(\vect0\leftarrow\vect R+\vect r_{\beta}-\vect r_{\alpha})e^{i\vect k\cdot\vect R}\label{eq:W Short definition}\\ -W_{\alpha\beta}^{\textup{L}}\left(\vect k\right) & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S^{\textup{L}}(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0)}\right)\left(\vect k-\vect K\right)\label{eq:W Long definition} +W_{\alpha\beta}^{\textup{S}}\left(\vect k\right) & = & \sum_{\vect R\in\basis u\ints^{d}}S^{\textup{S}}(\vect 0\leftarrow\vect R+\vect r_{\beta}-\vect r_{\alpha})e^{i\vect k\cdot\vect R}\label{eq:W Short definition}\\ +W_{\alpha\beta}^{\textup{L}}\left(\vect k\right) & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S^{\textup{L}}(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right)\label{eq:W Long definition} \end{eqnarray} \end_inset