WIP infinite sys.
Former-commit-id: e14d9ee7a04af1fa42b2a7de849de0569a2eb471
This commit is contained in:
parent
914389d609
commit
134c6e6bc0
|
@ -968,6 +968,13 @@ reference "eq:plane wave expansion"
|
|||
|
||||
\begin_layout Subsection
|
||||
Multiple scattering
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "subsec:Multiple-scattering"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
|
|
@ -95,6 +95,16 @@
|
|||
|
||||
\begin_layout Section
|
||||
Infinite periodic systems
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\dlv}{\vect b}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\rlv}{\vect b}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
@ -121,13 +131,43 @@ Topology anoyne?
|
|||
scatterer arrays.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Notation
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Formulation of the problem
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Assume a system of compact EM scatterers in otherwise homogeneous and isotropic
|
||||
medium, and assume that the system, i.e.
|
||||
Let us have a linear system of compact EM scatterers on a homogeneous background
|
||||
as in Section
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "subsec:Multiple-scattering"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
, but this time, system shall be periodic: let there be a
|
||||
\begin_inset Formula $d$
|
||||
\end_inset
|
||||
|
||||
-dimensional (
|
||||
\begin_inset Formula $d$
|
||||
\end_inset
|
||||
|
||||
can be 1, 2 or 3) lattice embedded into the three-dimensional real space,
|
||||
with lattice vectors.
|
||||
set of
|
||||
\begin_inset Formula $d$
|
||||
\end_inset
|
||||
|
||||
(one to three) lattice vectorsAssume a system of compact EM scatterers
|
||||
in otherwise homogeneous and isotropic medium, and assume that the system,
|
||||
i.e.
|
||||
both the medium and the scatterers, have linear response.
|
||||
A scattering problem in such system can be written as
|
||||
\begin_inset Formula
|
||||
|
@ -295,7 +335,7 @@ reference "eq:W definition"
|
|||
|
||||
in terms of integral with a delta comb
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\basis}[1]{\mathfrak{#1}}
|
||||
\renewcommand{\basis}[1]{\mathfrak{#1}}
|
||||
\end_inset
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue