Square lattice example
Former-commit-id: 7921734bf86081fc059b767d92fe00f9cde55384
This commit is contained in:
parent
2187af8a92
commit
137e810c13
|
@ -112,17 +112,6 @@ Finally, we present some results obtained with the QPMS suite as well as
|
|||
examples
|
||||
\family default
|
||||
directory of the QPMS source repository.
|
||||
The benchmarks require SCUFF-EM of version xxx
|
||||
\begin_inset Marginal
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Add the version when possible.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
or newer.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
|
@ -314,12 +303,251 @@ Next, we study the eigenmode problem of the same rectangular arrays.
|
|||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection
|
||||
lMax vs radius
|
||||
Effects of multipole cutoff
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
square lattice of spherical particles at gamma point, modes as a function
|
||||
of particle radius for several different lMaxes.
|
||||
In order to demonstrate some of the consequences of multipole cutoff, we
|
||||
consider a square lattice with periodicity
|
||||
\begin_inset Formula $p_{x}=p_{y}=580\,\mathrm{nm}$
|
||||
\end_inset
|
||||
|
||||
filled with spherical golden nanoparticles (with Drude-Lorentz model for
|
||||
permittivity; one sphere per unit cell) embedded in a medium with a constant
|
||||
refractive index
|
||||
\begin_inset Formula $n=1.52$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
We vary the multipole cutoff
|
||||
\begin_inset Formula $l_{\max}=1,\dots,5$
|
||||
\end_inset
|
||||
|
||||
and the particle radius
|
||||
\begin_inset Formula $r=50\,\mathrm{nm},\dots,300\,\mathrm{nm}$
|
||||
\end_inset
|
||||
|
||||
(note that right end of this interval is unphysical, as the spheres touch
|
||||
at
|
||||
\begin_inset Formula $r=290\,\mathrm{nm}$
|
||||
\end_inset
|
||||
|
||||
) We look at the lattice modes at the
|
||||
\begin_inset Formula $\Gamma$
|
||||
\end_inset
|
||||
|
||||
point right below the diffracted order crossing at 1.406 eV using Beyn's
|
||||
algorithm; the integration contour for Beyn's algorithm being a circle
|
||||
with centre at
|
||||
\begin_inset Formula $\omega=\left(1.335+0i\right)\mathrm{eV}/\hbar$
|
||||
\end_inset
|
||||
|
||||
and radius
|
||||
\begin_inset Formula $70.3\,\mathrm{meV}/\hbar$
|
||||
\end_inset
|
||||
|
||||
, and 410 sample points.
|
||||
We classify each of the found modes as one of the ten irreducible representatio
|
||||
ns of the corresponding little group at the
|
||||
\begin_inset Formula $\Gamma$
|
||||
\end_inset
|
||||
|
||||
point,
|
||||
\begin_inset Formula $D_{4h}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The real and imaginary parts of the obtained mode frequencies are shown
|
||||
in Fig.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "square lattice var lMax, r at gamma point Au"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
The most obvious (and expected) effect of the cutoff is the reduction of
|
||||
the number of modes found: the case
|
||||
\begin_inset Formula $l_{\max}=1$
|
||||
\end_inset
|
||||
|
||||
(dipole-dipole approximation) contains only the modes with nontrivial dipole
|
||||
excitations (
|
||||
\begin_inset Formula $x,y$
|
||||
\end_inset
|
||||
|
||||
dipoles in
|
||||
\begin_inset Formula $\mathrm{E}'$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $z$
|
||||
\end_inset
|
||||
|
||||
dipole in
|
||||
\begin_inset Formula $\mathrm{A_{2}''})$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
For relatively small particle sizes, the main effect of increasing
|
||||
\begin_inset Formula $l_{\max}$
|
||||
\end_inset
|
||||
|
||||
is making the higher multipolar modes accessible at all.
|
||||
As the particle radius increases, there start to appear more non-negligible
|
||||
elements in the
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix, and the cutoff then affects the mode frequencies as well.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Another effect related to mode finding is, that increasing
|
||||
\begin_inset Formula $l_{\max}$
|
||||
\end_inset
|
||||
|
||||
leads to overall decrease of the lowest singular values of the mode problem
|
||||
matrix
|
||||
\begin_inset Formula $M\left(\omega,\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
, so that they are very close to zero for a large frequency area, making
|
||||
it harder to determine the exact roots of the mode equation
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:lattice mode equation"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
, which might lead to some spurious results: Fig.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "square lattice var lMax, r at gamma point Au"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
shows modes with positive imaginary frequencies for
|
||||
\begin_inset Formula $l_{\max}\ge3$
|
||||
\end_inset
|
||||
|
||||
, which is unphysical (positive imaginary frequency means effective losses
|
||||
of the medium, which, together with the lossy particles, prevent emergence
|
||||
of propagating modes).
|
||||
However, the spurious frequencies can be made disappear by tuning the parameter
|
||||
s of Beyn's algorithm (namely, stricter residual threshold), but that might
|
||||
lead to losing legitimate results as well, especially if they are close
|
||||
to the integration contour.
|
||||
In such cases, it is often helpful to run Beyn's algorithm several times
|
||||
with different contours enclosing smaller frequency areas.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Float figure
|
||||
placement document
|
||||
alignment document
|
||||
wide false
|
||||
sideways false
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Caption Standard
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Graphics
|
||||
filename figs/beyn_lMax_cutoff_Au_sphere.pdf
|
||||
width 100text%
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
Consequences of multipole degree cutoff: Eigenfrequencies found with Beyn's
|
||||
algorithm for an infinite square lattice of golden spherical nanoparticles
|
||||
with varying particle size.
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "square lattice var lMax, r at gamma point Au"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Float figure
|
||||
placement document
|
||||
alignment document
|
||||
wide false
|
||||
sideways false
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Caption Standard
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Graphics
|
||||
filename figs/beyn_lMax_cutoff_const_eps_sphere.pdf
|
||||
width 100text%
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Consequences of multipole degree cutoff: Eigenfrequencies found with Beyn's
|
||||
algorithm for an infinite square lattice of spherical nanoparticles with
|
||||
constant relative permittivity
|
||||
\begin_inset Formula $\epsilon=4.0+0.7i$
|
||||
\end_inset
|
||||
|
||||
and varying particle size.
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "square lattice var lMax, r at gamma point constant epsilon"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_body
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
67694073f215e34a67372e1396a73dedb4e4410b
|
|
@ -0,0 +1 @@
|
|||
8ea32df73f09c0057448dd567927bb80494347a9
|
Loading…
Reference in New Issue