From 15013e6764d118844536ce9917bb90e19b6ecbda Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marek=20Ne=C4=8Dada?= Date: Tue, 15 Aug 2017 16:15:20 +0300 Subject: [PATCH] [ewald] dudom Former-commit-id: 911eb634ab3d609e8d008a66a4e5d7de2353c954 --- ewald.lyx | 217 ++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 217 insertions(+) create mode 100644 ewald.lyx diff --git a/ewald.lyx b/ewald.lyx new file mode 100644 index 0000000..3797a96 --- /dev/null +++ b/ewald.lyx @@ -0,0 +1,217 @@ +#LyX 2.1 created this file. For more info see http://www.lyx.org/ +\lyxformat 474 +\begin_document +\begin_header +\textclass article +\begin_preamble +\usepackage{unicode-math} + +% Toto je trik, jimž se z fontspec získá familyname pro následující +\ExplSyntaxOn +\DeclareExpandableDocumentCommand{\getfamilyname}{m} + { + \use:c { g__fontspec_ \cs_to_str:N #1 _family } + } +\ExplSyntaxOff + +% definujeme novou rodinu, jež se volá pomocí \MyCyr pro běžné použití, avšak pro účely \DeclareSymbolFont je nutno získat název pomocí getfamilyname definovaného výše +\newfontfamily\MyCyr{CMU Serif} + +\DeclareSymbolFont{cyritletters}{EU1}{\getfamilyname\MyCyr}{m}{it} +\newcommand{\makecyrmathletter}[1]{% + \begingroup\lccode`a=#1\lowercase{\endgroup + \Umathcode`a}="0 \csname symcyritletters\endcsname\space #1 +} +\count255="409 +\loop\ifnum\count255<"44F + \advance\count255 by 1 + \makecyrmathletter{\count255} +\repeat + +\renewcommand{\lyxmathsym}[1]{#1} +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language english +\language_package default +\inputencoding auto +\fontencoding global +\font_roman TeX Gyre Pagella +\font_sans default +\font_typewriter default +\font_math default +\font_default_family default +\use_non_tex_fonts true +\font_sc false +\font_osf true +\font_sf_scale 100 +\font_tt_scale 100 +\graphics default +\default_output_format pdf4 +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref true +\pdf_title "Accelerating lattice mode calculations with T-matrix method" +\pdf_author "Marek Nečada" +\pdf_bookmarks true +\pdf_bookmarksnumbered false +\pdf_bookmarksopen false +\pdf_bookmarksopenlevel 1 +\pdf_breaklinks false +\pdf_pdfborder false +\pdf_colorlinks false +\pdf_backref false +\pdf_pdfusetitle true +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\quotes_language english +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Title +\begin_inset FormulaMacro +\newcommand{\vect}[1]{\mathbf{#1}} +\end_inset + +Accelerating lattice mode calculations with +\begin_inset Formula $T$ +\end_inset + +-matrix method +\end_layout + +\begin_layout Author +Marek Nečada +\end_layout + +\begin_layout Section +Formulation of the problem +\end_layout + +\begin_layout Standard +Assume a system of compact EM scatterers in otherwise homogeneous and isotropic + medium, and assume that the system, i.e. + both the medium and the scatterers, have linear response. + A scattering problem in such system can be written as +\begin_inset Formula +\[ +A_{α}=T_{α}P_{α}=T_{α}(\sum_{β}S_{α\leftarrowβ}A_{β}+P_{0α}) +\] + +\end_inset + +where +\begin_inset Formula $T_{α}$ +\end_inset + + is the +\begin_inset Formula $T$ +\end_inset + +-matrix for scatterer α, +\begin_inset Formula $A_{α}$ +\end_inset + + is its vector of the scattered wave expansion coefficient (the multipole + indices are not explicitely indicated here) and +\begin_inset Formula $P_{α}$ +\end_inset + + is the local expansion of the incoming sources. + +\begin_inset Formula $S_{α\leftarrowβ}$ +\end_inset + + is ... + and ... + is ... +\end_layout + +\begin_layout Standard +... +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\sum_{β}(\delta_{αβ}-T_{α}S_{α\leftarrowβ})A_{β}=T_{α}P_{0α}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Now suppose that the scatterers constitute an infinite lattice +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{\vect aα}S_{\vect aα\leftarrow\vect bβ})A_{\vect bβ}=T_{\vect aα}P_{0\vect aα}. +\] + +\end_inset + +Due to the periodicity, we can write +\begin_inset Formula $S_{\vect aα\leftarrow\vect bβ}=S_{α\leftarrowβ}(\vect b-\vect a)$ +\end_inset + +. + In order to find lattice modes, we search for solutions with zero RHS +\begin_inset Formula +\[ +\sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{\vect aα}S_{\vect aα\leftarrow\vect bβ})A_{\vect bβ}=0 +\] + +\end_inset + +and we assume periodic solution +\begin_inset Formula $A_{\vect b\alpha}(\vect k)=A_{\vect a\alpha}e^{i\vect k\cdot\vect r_{\vect b-\vect a}}$ +\end_inset + +. +\end_layout + +\end_body +\end_document