From 150c77c31e6715b7fcd2dad09fe3a668ca6ccb0b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marek=20Ne=C4=8Dada?= Date: Tue, 5 Sep 2017 15:03:02 +0300 Subject: [PATCH] Begin memo on radiative xfer. Former-commit-id: d53ecaa7f212f9560f89a33ad1cba5cea0200836 --- notes/radpower.lyx | 414 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 414 insertions(+) create mode 100644 notes/radpower.lyx diff --git a/notes/radpower.lyx b/notes/radpower.lyx new file mode 100644 index 0000000..bf85231 --- /dev/null +++ b/notes/radpower.lyx @@ -0,0 +1,414 @@ +#LyX 2.1 created this file. For more info see http://www.lyx.org/ +\lyxformat 474 +\begin_document +\begin_header +\textclass article +\use_default_options true +\begin_modules +theorems-ams +\end_modules +\maintain_unincluded_children false +\language english +\language_package default +\inputencoding auto +\fontencoding global +\font_roman TeX Gyre Pagella +\font_sans default +\font_typewriter default +\font_math auto +\font_default_family default +\use_non_tex_fonts true +\font_sc false +\font_osf true +\font_sf_scale 100 +\font_tt_scale 100 +\graphics default +\default_output_format pdf4 +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize 10 +\spacing single +\use_hyperref true +\pdf_title "Sähköpajan päiväkirja" +\pdf_author "Marek Nečada" +\pdf_bookmarks true +\pdf_bookmarksnumbered false +\pdf_bookmarksopen false +\pdf_bookmarksopenlevel 1 +\pdf_breaklinks false +\pdf_pdfborder false +\pdf_colorlinks false +\pdf_backref false +\pdf_pdfusetitle true +\papersize a4paper +\use_geometry true +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\index Index +\shortcut idx +\color #008000 +\end_index +\leftmargin 1cm +\topmargin 5mm +\rightmargin 1cm +\bottommargin 1cm +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\quotes_language english +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset FormulaMacro +\newcommand{\uoft}[1]{\mathfrak{F}#1} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\uaft}[1]{\mathfrak{\mathbb{F}}#1} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\usht}[2]{\mathbb{S}_{#1}#2} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\bsht}[2]{\mathrm{S}_{#1}#2} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\pht}[2]{\mathfrak{\mathbb{H}}_{#1}#2} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\vect}[1]{\mathbf{#1}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\ud}{\mathrm{d}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\basis}[1]{\mathfrak{#1}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\dc}[1]{Ш_{#1}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\rec}[1]{#1^{-1}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\recb}[1]{#1^{\widehat{-1}}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\ints}{\mathbb{Z}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\nats}{\mathbb{N}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\reals}{\mathbb{R}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\ush}[2]{Y_{#1,#2}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\hgfr}{\mathbf{F}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\ph}{\mathrm{ph}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\kor}[1]{\underline{#1}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\koru}[1]{\overline{#1}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\hgf}{F} +\end_inset + + +\end_layout + +\begin_layout Title +Radiation power balance in nanoparticles +\end_layout + +\begin_layout Author +Marek Nečada +\end_layout + +\begin_layout Abstract +This memo deals with the formulae for radiation transfer, absorption, extinction + for single particle and composite system of several nanoparticles. + I also derive some natural conditions on +\begin_inset Formula $T$ +\end_inset + +-matrix elements. +\end_layout + +\begin_layout Section* +Conventions +\end_layout + +\begin_layout Standard +If not stated otherwise, Kristensson's notation and normalisation conventions + are used in this memo. +\end_layout + +\begin_layout Section +Single particle +\end_layout + +\begin_layout Subsection +Power transfer formula, absorption +\end_layout + +\begin_layout Standard +The power radiated away by a linear scatterer at fixed harmonic frequency + is according to [Kris (2.28)] +\begin_inset Formula +\[ +P=\frac{1}{2}\sum_{n}\left(\left|f_{n}\right|^{2}+\Re\left(f_{n}a_{n}^{*}\right)\right) +\] + +\end_inset + +where +\begin_inset Formula $n$ +\end_inset + + is a multiindex describing the type (E/M) and multipole degree and order + of the wave, +\begin_inset Formula $f_{n}$ +\end_inset + + is the coefficient corresponding to +\series bold +outgoing +\series default + (Hankel function based) and +\begin_inset Formula $a_{n}$ +\end_inset + + to +\series bold +regular +\series default + (first-order Bessel function based) waves. +\end_layout + +\begin_layout Standard +This is minus the power absorbed by the nanoparticle, and unless the particle + has some gain mechanism, this cannot be positive. + The basic condition for a physical nanoparticle therefore reads +\begin_inset Formula +\begin{equation} +P=\frac{1}{2}\sum_{n}\left(\left|f_{n}\right|^{2}+\Re\left(f_{n}a_{n}^{*}\right)\right)\le0.\label{eq:Absorption is never negative} +\end{equation} + +\end_inset + + +\end_layout + +\begin_layout Subsection +Conditions on the +\begin_inset Formula $T$ +\end_inset + +-matrix +\end_layout + +\begin_layout Standard +For a linear scatterer, the outgoing and regular wave coefficients are connected + via the +\begin_inset Formula $T$ +\end_inset + +-matrix +\begin_inset Formula +\begin{equation} +f_{n}=\sum_{n'}T_{nn'}a_{n'}.\label{eq:T-matrix definition} +\end{equation} + +\end_inset + + +\end_layout + +\begin_layout Standard +Inequality +\begin_inset CommandInset ref +LatexCommand eqref +reference "eq:Absorption is never negative" + +\end_inset + + enables us to derive some conditions on the +\begin_inset Formula $T$ +\end_inset + +-matrix. + Let the particle be driven by a wave of a single type +\begin_inset Formula $m$ +\end_inset + + only so the coefficients of all other components of the driving field are + zero, +\begin_inset Formula $a_{n}=\delta_{nm}$ +\end_inset + +. + From +\begin_inset CommandInset ref +LatexCommand eqref +reference "eq:Absorption is never negative" + +\end_inset + + and +\begin_inset CommandInset ref +LatexCommand eqref +reference "eq:T-matrix definition" + +\end_inset + + we get +\begin_inset Formula +\begin{eqnarray} +P & = & \frac{1}{2}\sum_{n}\left(\left|\sum_{n'}T_{nn'}a_{n'}\right|^{2}+\Re\left(\sum_{n'}T_{nn'}a_{n'}a_{n}^{*}\right)\right)\nonumber \\ + & = & \frac{1}{2}\sum_{n}\left(\left|\sum_{n'}T_{nn'}\delta_{n'm}\right|^{2}+\Re\left(\sum_{n'}T_{nn'}\delta_{n'm}\delta_{nm}\right)\right)\nonumber \\ + & = & \frac{1}{2}\left(\left|\sum_{n}T_{nm}\right|^{2}+\Re T_{mm}\right)\le0\qquad\forall m,\label{eq:Absorption is never negative for single wave type} +\end{eqnarray} + +\end_inset + +a condition that should be checked e.g. + for the +\begin_inset Formula $T$ +\end_inset + +-matrices generated by SCUFF-EM. +\end_layout + +\begin_layout Remark +For a particle of spherical symmetry +\begin_inset Formula $T_{nm}\propto\delta_{nm}$ +\end_inset + +, so +\begin_inset CommandInset ref +LatexCommand eqref +reference "eq:Absorption is never negative for single wave type" + +\end_inset + + gives +\begin_inset Formula $-\Re T_{mm}\ge\left|T_{mm}\right|^{2}$ +\end_inset + + which in turn implies +\begin_inset Formula $\left|T_{mm}\right|<1$ +\end_inset + +. + (Any similar conclusion for the general case?) +\end_layout + +\begin_layout Problem +Obviously, +\begin_inset CommandInset ref +LatexCommand eqref +reference "eq:Absorption is never negative for single wave type" + +\end_inset + + is the consequence of the condition +\begin_inset CommandInset ref +LatexCommand eqref +reference "eq:Absorption is never negative" + +\end_inset + +. + But is +\begin_inset CommandInset ref +LatexCommand eqref +reference "eq:Absorption is never negative" + +\end_inset + + always true if +\begin_inset CommandInset ref +LatexCommand eqref +reference "eq:Absorption is never negative for single wave type" + +\end_inset + + satisfied? +\end_layout + +\end_body +\end_document