[ewald] dudom
Former-commit-id: a41864b9b1371d7a12d563f03da8873d48655f18
This commit is contained in:
parent
f3d27e74d8
commit
16f0db21c5
|
@ -336,6 +336,21 @@ reference "eq:W definition"
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
-dimensional lattice.
|
-dimensional lattice.
|
||||||
|
\begin_inset Foot
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
Note that
|
||||||
|
\begin_inset Formula $d$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
here is dimensionality of the lattice, not the space it lies in, which
|
||||||
|
I for certain reasons assume to be three.
|
||||||
|
(TODO few notes on integration and reciprocal lattices in some appendix)
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
In electrostatics, one can solve this problem with Ewald summation.
|
In electrostatics, one can solve this problem with Ewald summation.
|
||||||
Its basic idea is that if what asymptoticaly decays poorly in the direct
|
Its basic idea is that if what asymptoticaly decays poorly in the direct
|
||||||
space, will perhaps decay fast in the Fourier space.
|
space, will perhaps decay fast in the Fourier space.
|
||||||
|
@ -366,7 +381,7 @@ The translation operator
|
||||||
\begin_inset Formula $S$
|
\begin_inset Formula $S$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
is now a function defined in the whole 3D space;
|
is now a function defined in the whole 3d space;
|
||||||
\begin_inset Formula $\vect r_{\alpha},\vect r_{\beta}$
|
\begin_inset Formula $\vect r_{\alpha},\vect r_{\beta}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
@ -600,12 +615,42 @@ reference "eq:W Long definition"
|
||||||
absolutely convergent.
|
absolutely convergent.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
The translation operator
|
||||||
|
\begin_inset Formula $S$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
for compact scatterers in 3d can be expressed as
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
S_{l',m',t'\leftarrow l,m,t}\left(\vect r\leftarrow\vect 0\right)=\sum_{p}c_{p}^{l',m',t'\leftarrow l,m,t}Y_{p,m'-m}\left(\theta_{\vect r},\phi_{\vect r}\right)z_{p}^{(J)}\left(\left|\vect r\right|\right)
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
where
|
||||||
|
\begin_inset Formula $Y_{l,m}\left(\theta,\phi\right)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
are the spherical harmonics,
|
||||||
|
\begin_inset Formula $z_{p}^{(J)}\left(r\right)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
some of the Bessel or Hankel functions (TODO) and
|
||||||
|
\begin_inset Formula $c_{p}^{l,m,t\leftarrow l',m',t'}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
are some ugly but known coefficients (Xu 1996, eqs.
|
||||||
|
76,77).
|
||||||
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Section
|
\begin_layout Section
|
||||||
(Appendix) Hankel transform
|
(Appendix) Hankel transform
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
Acording to Wikipedia page on Hankel transform,
|
Acording to (Baddour 2010, eq.
|
||||||
|
13) (CHECK FACTORS)
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\[
|
||||||
\uaft f(\vect k)=
|
\uaft f(\vect k)=
|
||||||
|
|
Loading…
Reference in New Issue