[ewald] dudom
Former-commit-id: a41864b9b1371d7a12d563f03da8873d48655f18
This commit is contained in:
parent
f3d27e74d8
commit
16f0db21c5
|
@ -336,6 +336,21 @@ reference "eq:W definition"
|
|||
\end_inset
|
||||
|
||||
-dimensional lattice.
|
||||
\begin_inset Foot
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Note that
|
||||
\begin_inset Formula $d$
|
||||
\end_inset
|
||||
|
||||
here is dimensionality of the lattice, not the space it lies in, which
|
||||
I for certain reasons assume to be three.
|
||||
(TODO few notes on integration and reciprocal lattices in some appendix)
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
In electrostatics, one can solve this problem with Ewald summation.
|
||||
Its basic idea is that if what asymptoticaly decays poorly in the direct
|
||||
space, will perhaps decay fast in the Fourier space.
|
||||
|
@ -366,7 +381,7 @@ The translation operator
|
|||
\begin_inset Formula $S$
|
||||
\end_inset
|
||||
|
||||
is now a function defined in the whole 3D space;
|
||||
is now a function defined in the whole 3d space;
|
||||
\begin_inset Formula $\vect r_{\alpha},\vect r_{\beta}$
|
||||
\end_inset
|
||||
|
||||
|
@ -561,7 +576,7 @@ Finding a good decomposition
|
|||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The remaining challenge is therefore finding a suitable decomposition
|
||||
The remaining challenge is therefore finding a suitable decomposition
|
||||
\begin_inset Formula $S^{\textup{L}}+S^{\textup{S}}$
|
||||
\end_inset
|
||||
|
||||
|
@ -600,12 +615,42 @@ reference "eq:W Long definition"
|
|||
absolutely convergent.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The translation operator
|
||||
\begin_inset Formula $S$
|
||||
\end_inset
|
||||
|
||||
for compact scatterers in 3d can be expressed as
|
||||
\begin_inset Formula
|
||||
\[
|
||||
S_{l',m',t'\leftarrow l,m,t}\left(\vect r\leftarrow\vect 0\right)=\sum_{p}c_{p}^{l',m',t'\leftarrow l,m,t}Y_{p,m'-m}\left(\theta_{\vect r},\phi_{\vect r}\right)z_{p}^{(J)}\left(\left|\vect r\right|\right)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $Y_{l,m}\left(\theta,\phi\right)$
|
||||
\end_inset
|
||||
|
||||
are the spherical harmonics,
|
||||
\begin_inset Formula $z_{p}^{(J)}\left(r\right)$
|
||||
\end_inset
|
||||
|
||||
some of the Bessel or Hankel functions (TODO) and
|
||||
\begin_inset Formula $c_{p}^{l,m,t\leftarrow l',m',t'}$
|
||||
\end_inset
|
||||
|
||||
are some ugly but known coefficients (Xu 1996, eqs.
|
||||
76,77).
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
(Appendix) Hankel transform
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Acording to Wikipedia page on Hankel transform,
|
||||
Acording to (Baddour 2010, eq.
|
||||
13) (CHECK FACTORS)
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\uaft f(\vect k)=
|
||||
|
|
Loading…
Reference in New Issue