Xu test more or less working for small n, nu.

N. B. incompatibility with old Taylor-like translation coefficients


Former-commit-id: 506c15d318b673cc38d0e137efbc55b2687dde7c
This commit is contained in:
Marek Nečada 2018-02-08 06:23:34 +02:00
parent d5f47c1844
commit 1829dcd58d
2 changed files with 24 additions and 20 deletions

View File

@ -15,7 +15,7 @@ testcase_single_trans_t testcases_xu[] = {
#include "testcases_translations_Xu" #include "testcases_translations_Xu"
}; };
int lMax=10; int lMax=20;
int main() { int main() {
qpms_trans_calculator *c = qpms_trans_calculator_init(lMax, QPMS_NORMALISATION_XU); qpms_trans_calculator *c = qpms_trans_calculator_init(lMax, QPMS_NORMALISATION_XU);
@ -24,10 +24,10 @@ int main() {
if (!tc->n || !tc->nu || tc->n > lMax || tc->nu > lMax ) continue; if (!tc->n || !tc->nu || tc->n > lMax || tc->nu > lMax ) continue;
printf("m=%d, n=%d, mu=%d, nu=%d,\n", tc->m,tc->n,tc->mu,tc->nu); printf("m=%d, n=%d, mu=%d, nu=%d,\n", tc->m,tc->n,tc->mu,tc->nu);
complex double A = qpms_trans_single_A(QPMS_NORMALISATION_XU,tc->m, tc->n, tc->mu, tc->nu, tc->kdlj, true, tc->J); complex double A = qpms_trans_single_A(QPMS_NORMALISATION_XU,tc->m, tc->n, tc->mu, tc->nu, tc->kdlj, false, tc->J);
complex double B = qpms_trans_single_B(QPMS_NORMALISATION_XU,tc->m, tc->n, tc->mu, tc->nu, tc->kdlj, true, tc->J); complex double B = qpms_trans_single_B(QPMS_NORMALISATION_XU,tc->m, tc->n, tc->mu, tc->nu, tc->kdlj, false, tc->J);
complex double A2 = qpms_trans_calculator_get_A(c, tc->m, tc->n, tc->mu, tc->nu, tc->kdlj, true, tc->J); complex double A2 = qpms_trans_calculator_get_A(c, tc->m, tc->n, tc->mu, tc->nu, tc->kdlj, false, tc->J);
complex double B2 = qpms_trans_calculator_get_B(c, tc->m, tc->n, tc->mu, tc->nu, tc->kdlj, true, tc->J); complex double B2 = qpms_trans_calculator_get_B(c, tc->m, tc->n, tc->mu, tc->nu, tc->kdlj, false, tc->J);
printf("A = %.16f+%.16fj, relerr=%.16f, J=%d\n", printf("A = %.16f+%.16fj, relerr=%.16f, J=%d\n",
creal(A), cimag(A), (0 == cabs(tc->result_A - A)) ? 0 : creal(A), cimag(A), (0 == cabs(tc->result_A - A)) ? 0 :
cabs(tc->result_A - A)/((cabs(A) < cabs(tc->result_A)) ? cabs(A) : cabs(tc->result_A)), cabs(tc->result_A - A)/((cabs(A) < cabs(tc->result_A)) ? cabs(A) : cabs(tc->result_A)),

View File

@ -124,9 +124,10 @@ complex double qpms_trans_single_A(qpms_normalisation_t norm,
gaunt_xu(-m,n,mu,nu,qmax,a1q,&err); gaunt_xu(-m,n,mu,nu,qmax,a1q,&err);
double a1q0 = a1q[0]; double a1q0 = a1q[0];
if (err) abort(); if (err) abort();
int csphase = qpms_normalisation_t_csphase(norm); //FIXME EITHER TO NORMFAC OR USE HERE
double leg[gsl_sf_legendre_array_n(n+nu)]; double leg[gsl_sf_legendre_array_n(n+nu)];
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu,costheta,-1,leg)) abort(); if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu,costheta,csphase,leg)) abort();
complex double bes[n+nu+1]; complex double bes[n+nu+1];
if (qpms_sph_bessel_fill(J, n+nu, kdlj.r, bes)) abort(); if (qpms_sph_bessel_fill(J, n+nu, kdlj.r, bes)) abort();
complex double sum = 0; complex double sum = 0;
@ -152,10 +153,8 @@ complex double qpms_trans_single_A(qpms_normalisation_t norm,
double normlogfac = qpms_trans_normlogfac(norm,m,n,mu,nu); double normlogfac = qpms_trans_normlogfac(norm,m,n,mu,nu);
double normfac = qpms_trans_normfac(norm,m,n,mu,nu); double normfac = qpms_trans_normfac(norm,m,n,mu,nu);
// int csphase = qpms_normalisation_t_csphase(norm); FIXME EITHER TO NORMFAC OR USE HERE // ipow(n-nu) is the difference from the Taylor formula!
presum *= /*ipow(n-nu) * */(normfac * exp(normlogfac));
presum *= ipow(n-nu) * (normfac * exp(normlogfac));
return presum * sum; return presum * sum;
} }
@ -197,6 +196,7 @@ complex double qpms_trans_single_A_Taylor(int m, int n, int mu, int nu, sph_t kd
complex double presum = exp(exponent); complex double presum = exp(exponent);
presum *= cexp(I*(mu-m)*kdlj.phi) * min1pow(m) * ipow(nu+n) / (4*n); presum *= cexp(I*(mu-m)*kdlj.phi) * min1pow(m) * ipow(nu+n) / (4*n);
// N.B. ipow(nu-n) is different from the general formula!
complex double prenormratio = ipow(nu-n) * sqrt(((2.*nu+1)/(2.*n+1))* exp( complex double prenormratio = ipow(nu-n) * sqrt(((2.*nu+1)/(2.*n+1))* exp(
lgamma(n+m+1)-lgamma(n-m+1)+lgamma(nu-mu+1)-lgamma(nu+mu+1))); lgamma(n+m+1)-lgamma(n-m+1)+lgamma(nu-mu+1)-lgamma(nu+mu+1)));
return (presum / prenormratio) * sum; return (presum / prenormratio) * sum;
@ -282,7 +282,8 @@ complex double qpms_trans_single_B(qpms_normalisation_t norm,
a3q0 = a3q[0]; a3q0 = a3q[0];
double leg[gsl_sf_legendre_array_n(n+nu+1)]; double leg[gsl_sf_legendre_array_n(n+nu+1)];
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1,costheta,-1,leg)) abort(); int csphase = qpms_normalisation_t_csphase(norm);// FIXME EITHER TO NORMFAC OR USE HERE
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1,costheta,csphase,leg)) abort();
complex double bes[n+nu+2]; complex double bes[n+nu+2];
if (qpms_sph_bessel_fill(J, n+nu+1, kdlj.r, bes)) abort(); if (qpms_sph_bessel_fill(J, n+nu+1, kdlj.r, bes)) abort();
@ -313,9 +314,8 @@ complex double qpms_trans_single_B(qpms_normalisation_t norm,
double normlogfac = qpms_trans_normlogfac(norm,m,n,mu,nu); double normlogfac = qpms_trans_normlogfac(norm,m,n,mu,nu);
double normfac = qpms_trans_normfac(norm,m,n,mu,nu); double normfac = qpms_trans_normfac(norm,m,n,mu,nu);
// int csphase = qpms_normalisation_t_csphase(norm); FIXME EITHER TO NORMFAC OR USE HERE // ipow(n-nu) is the difference from the "old Taylor" formula
presum *= /*ipow(n-nu) * */(exp(normlogfac) * normfac);
presum *= ipow(n-nu) * (exp(normlogfac) * normfac);
return presum * sum; return presum * sum;
} }
@ -371,6 +371,7 @@ complex double qpms_trans_single_B_Taylor(int m, int n, int mu, int nu, sph_t kd
(4*n)*(n+1)*(n+m+1)); (4*n)*(n+1)*(n+m+1));
// Taylor normalisation v2, proven to be equivalent // Taylor normalisation v2, proven to be equivalent
// ipow(nu-n) is different from the new general formula!!!
complex double prenormratio = ipow(nu-n) * sqrt(((2.*nu+1)/(2.*n+1))* exp( complex double prenormratio = ipow(nu-n) * sqrt(((2.*nu+1)/(2.*n+1))* exp(
lgamma(n+m+1)-lgamma(n-m+1)+lgamma(nu-mu+1)-lgamma(nu+mu+1))); lgamma(n+m+1)-lgamma(n-m+1)+lgamma(nu-mu+1)-lgamma(nu+mu+1)));
@ -428,13 +429,14 @@ static void qpms_trans_calculator_multipliers_A_general(
// TODO use csphase to modify normfac here!!!! // TODO use csphase to modify normfac here!!!!
// normfac = xxx ? -normfac : normfac; // normfac = xxx ? -normfac : normfac;
normfac *= min1pow(m+n); normfac *= min1pow(m); //different from old Taylor
double exponent=(lgamma(2*n+1)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2) double exponent=(lgamma(2*n+1)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2)
+lgamma(n+nu+m-mu+1)-lgamma(n-m+1)-lgamma(nu+mu+1) +lgamma(n+nu+m-mu+1)-lgamma(n-m+1)-lgamma(nu+mu+1)
+lgamma(n+nu+1) - lgamma(2*(n+nu)+1)) +lgamma(n+nu+1) - lgamma(2*(n+nu)+1))
+ normlogfac; + normlogfac;
double presum = exp(exponent); complex double presum = exp(exponent);
presum *= normfac / (4.*n); presum *= normfac / (4.*n);
presum *= ipow(n+nu); // different from old Taylor
for(int q = 0; q <= qmax; q++) { for(int q = 0; q <= qmax; q++) {
int p = n+nu-2*q; int p = n+nu-2*q;
@ -480,7 +482,7 @@ static void qpms_trans_calculator_multipliers_B_general(
double normfac = qpms_trans_normfac(norm,m,n,mu,nu); double normfac = qpms_trans_normfac(norm,m,n,mu,nu);
// TODO use csphase to modify normfac here!!!! // TODO use csphase to modify normfac here!!!!
// normfac = xxx ? -normfac : normfac; // normfac = xxx ? -normfac : normfac;
normfac *= min1pow(m+n); normfac *= min1pow(m);//different from old taylor
@ -489,7 +491,7 @@ static void qpms_trans_calculator_multipliers_B_general(
+lgamma(n+nu+2) - lgamma(2*(n+nu)+3)) +lgamma(n+nu+2) - lgamma(2*(n+nu)+3))
+normlogfac; +normlogfac;
complex double presum = exp(exponent); complex double presum = exp(exponent);
presum *= I * normfac / ( presum *= I * ipow(nu+n) /*different from old Taylor */ * normfac / (
(4*n)*(n+1)*(n+m+1)); (4*n)*(n+1)*(n+m+1));
for (int q = 0; q <= Qmax; ++q) { for (int q = 0; q <= Qmax; ++q) {
@ -754,6 +756,7 @@ complex double qpms_trans_calculator_get_A_buf(const qpms_trans_calculator *c,
if (0 == kdlj.r && J != QPMS_BESSEL_REGULAR) if (0 == kdlj.r && J != QPMS_BESSEL_REGULAR)
// TODO warn? // TODO warn?
return NAN+I*NAN; return NAN+I*NAN;
int csphase = qpms_normalisation_t_csphase(c->normalisation);
switch(c->normalisation) { switch(c->normalisation) {
// TODO use normalised legendre functions for Taylor and Kristensson // TODO use normalised legendre functions for Taylor and Kristensson
case QPMS_NORMALISATION_TAYLOR: case QPMS_NORMALISATION_TAYLOR:
@ -762,7 +765,7 @@ complex double qpms_trans_calculator_get_A_buf(const qpms_trans_calculator *c,
{ {
double costheta = cos(kdlj.theta); double costheta = cos(kdlj.theta);
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu, if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu,
costheta,-1,legendre_buf)) abort(); costheta,csphase,legendre_buf)) abort();
if (qpms_sph_bessel_fill(J, n+nu+1, kdlj.r, bessel_buf)) abort(); if (qpms_sph_bessel_fill(J, n+nu+1, kdlj.r, bessel_buf)) abort();
return qpms_trans_calculator_get_A_precalcbuf(c,m,n,mu,nu, return qpms_trans_calculator_get_A_precalcbuf(c,m,n,mu,nu,
kdlj,r_ge_d,J,bessel_buf,legendre_buf); kdlj,r_ge_d,J,bessel_buf,legendre_buf);
@ -802,6 +805,7 @@ complex double qpms_trans_calculator_get_B_buf(const qpms_trans_calculator *c,
if (0 == kdlj.r && J != QPMS_BESSEL_REGULAR) if (0 == kdlj.r && J != QPMS_BESSEL_REGULAR)
// TODO warn? // TODO warn?
return NAN+I*NAN; return NAN+I*NAN;
int csphase = qpms_normalisation_t_csphase(c->normalisation);
switch(c->normalisation) { switch(c->normalisation) {
case QPMS_NORMALISATION_TAYLOR: case QPMS_NORMALISATION_TAYLOR:
case QPMS_NORMALISATION_KRISTENSSON: case QPMS_NORMALISATION_KRISTENSSON:
@ -809,7 +813,7 @@ complex double qpms_trans_calculator_get_B_buf(const qpms_trans_calculator *c,
{ {
double costheta = cos(kdlj.theta); double costheta = cos(kdlj.theta);
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1, if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1,
costheta,-1,legendre_buf)) abort(); costheta,csphase,legendre_buf)) abort();
if (qpms_sph_bessel_fill(J, n+nu+2, kdlj.r, bessel_buf)) abort(); if (qpms_sph_bessel_fill(J, n+nu+2, kdlj.r, bessel_buf)) abort();
return qpms_trans_calculator_get_B_precalcbuf(c,m,n,mu,nu, return qpms_trans_calculator_get_B_precalcbuf(c,m,n,mu,nu,
kdlj,r_ge_d,J,bessel_buf,legendre_buf); kdlj,r_ge_d,J,bessel_buf,legendre_buf);