Reindend, add also the 'coarse values' calculation
Former-commit-id: 2dc73a2875823cae187585787bd4d344dea232f9
This commit is contained in:
parent
5471367aad
commit
1aa9890155
201
qpms/beyn.c
201
qpms/beyn.c
|
@ -51,9 +51,9 @@ double randN(double Sigma, double Mu) {
|
|||
#if 0
|
||||
// Uniformly random number between -2 and 2
|
||||
gsl_complex zrandN(){
|
||||
double a = (rand()*4.0/RAND_MAX) - 2;
|
||||
double b = (rand()*4.0/RAND_MAX) - 2;
|
||||
return gsl_complex_rect(a, b);
|
||||
double a = (rand()*4.0/RAND_MAX) - 2;
|
||||
double b = (rand()*4.0/RAND_MAX) - 2;
|
||||
return gsl_complex_rect(a, b);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -97,13 +97,13 @@ BeynSolver *CreateBeynSolver(int M, int L)
|
|||
#if 0
|
||||
// internal workspace: need storage for 2 MxL matrices
|
||||
// plus 3 LxL matrices
|
||||
#define MLBUFFERS 2
|
||||
#define LLBUFFERS 3
|
||||
#define MLBUFFERS 2
|
||||
#define LLBUFFERS 3
|
||||
size_t ML = MLMax*L, LL = L*L;
|
||||
#endif
|
||||
|
||||
|
||||
return Solver;
|
||||
|
||||
|
||||
}
|
||||
|
||||
/***************************************************************/
|
||||
|
@ -134,12 +134,12 @@ void DestroyBeynSolver(BeynSolver *Solver)
|
|||
void ReRandomize(BeynSolver *Solver, unsigned int RandSeed)
|
||||
{
|
||||
if (RandSeed==0)
|
||||
RandSeed=time(0);
|
||||
RandSeed=time(0);
|
||||
srandom(RandSeed);
|
||||
gsl_matrix_complex *VHat=Solver->VHat;
|
||||
for(int nr=0; nr<VHat->size1; nr++)
|
||||
for(int nc=0; nc<VHat->size2; nc++)
|
||||
gsl_matrix_complex_set(VHat,nr,nc,cs2g(zrandN(1, 0)));
|
||||
for(int nc=0; nc<VHat->size2; nc++)
|
||||
gsl_matrix_complex_set(VHat,nr,nc,cs2g(zrandN(1, 0)));
|
||||
|
||||
}
|
||||
|
||||
|
@ -163,7 +163,7 @@ int ProcessAMatrices(BeynSolver *Solver, beyn_function_M_t M_function,
|
|||
int Verbose = 1;//CheckEnv("SCUFF_BEYN_VERBOSE");
|
||||
double RankTol=1.0e-4; //CheckEnv("SCUFF_BEYN_RANK_TOL",&RankTol);
|
||||
double ResTol=0.0; // CheckEnv("SCUFF_BEYN_RES_TOL",&ResTol);
|
||||
|
||||
|
||||
// A0 -> V0Full * Sigma * W0TFull'
|
||||
printf(" Beyn: computing SVD...\n");
|
||||
gsl_matrix_complex* V0Full = gsl_matrix_complex_alloc(M,L);
|
||||
|
@ -171,37 +171,37 @@ int ProcessAMatrices(BeynSolver *Solver, beyn_function_M_t M_function,
|
|||
|
||||
gsl_matrix_complex* W0TFull = gsl_matrix_complex_alloc(L,L);
|
||||
//A0->SVD(Sigma, &V0Full, &W0TFull);
|
||||
|
||||
|
||||
QPMS_ENSURE(Sigma->stride == 1, "Sigma vector stride must be 1 for LAPACKE_zgesdd, got %zd.", Sigma->stride);
|
||||
QPMS_ENSURE(V0Full->size1 >= V0Full->size2, "m = %zd, l = %zd, what the hell?");
|
||||
QPMS_ENSURE_SUCCESS(LAPACKE_zgesdd(LAPACK_ROW_MAJOR, // A = U*Σ*conjg(V')
|
||||
'O' /*jobz, 'O' overwrites a with U and saves conjg(V') in vt if m >= n, i.e. if M >= L, which holds*/,
|
||||
V0Full->size1 /* m, number of rows */,
|
||||
V0Full->size2 /* n, number of columns */,
|
||||
(lapack_complex_double *)(V0Full->data) /*a*/,
|
||||
V0Full->tda /*lda*/,
|
||||
Sigma->data /*s*/,
|
||||
NULL /*u; not used*/,
|
||||
M /*ldu; should not be really used but lapacke requires it for some obscure reason*/,
|
||||
(lapack_complex_double *)W0TFull->data /*vt*/,
|
||||
W0TFull->tda /*ldvt*/
|
||||
));
|
||||
'O' /*jobz, 'O' overwrites a with U and saves conjg(V') in vt if m >= n, i.e. if M >= L, which holds*/,
|
||||
V0Full->size1 /* m, number of rows */,
|
||||
V0Full->size2 /* n, number of columns */,
|
||||
(lapack_complex_double *)(V0Full->data) /*a*/,
|
||||
V0Full->tda /*lda*/,
|
||||
Sigma->data /*s*/,
|
||||
NULL /*u; not used*/,
|
||||
M /*ldu; should not be really used but lapacke requires it for some obscure reason*/,
|
||||
(lapack_complex_double *)W0TFull->data /*vt*/,
|
||||
W0TFull->tda /*ldvt*/
|
||||
));
|
||||
|
||||
|
||||
|
||||
// compute effective rank K (number of eigenvalue candidates)
|
||||
int K=0;
|
||||
for(int k=0; k<Sigma->size /* this is L, actually */; k++)
|
||||
{ if (Verbose) printf("Beyn: SV(%i)=%e\n",k,gsl_vector_get(Sigma, k));
|
||||
if (gsl_vector_get(Sigma, k) > RankTol )
|
||||
{ if (Verbose) printf("Beyn: SV(%i)=%e\n",k,gsl_vector_get(Sigma, k));
|
||||
if (gsl_vector_get(Sigma, k) > RankTol )
|
||||
K++;
|
||||
}
|
||||
}
|
||||
printf(" Beyn: %i/%i relevant singular values\n",K,L);
|
||||
if (K==0)
|
||||
{ printf("no singular values found in Beyn eigensolver\n");
|
||||
return 0;
|
||||
}
|
||||
{ printf("no singular values found in Beyn eigensolver\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
// set V0, W0T = matrices of first K right, left singular vectors
|
||||
gsl_matrix_complex *V0 = gsl_matrix_complex_alloc(M,K);
|
||||
|
@ -217,7 +217,7 @@ int ProcessAMatrices(BeynSolver *Solver, beyn_function_M_t M_function,
|
|||
|
||||
gsl_matrix_complex_free(V0Full);
|
||||
gsl_matrix_complex_free(W0TFull);
|
||||
|
||||
|
||||
|
||||
// B <- V0' * A1 * W0 * Sigma^-1
|
||||
gsl_matrix_complex *TM2 = gsl_matrix_complex_calloc(K,L);
|
||||
|
@ -228,14 +228,14 @@ int ProcessAMatrices(BeynSolver *Solver, beyn_function_M_t M_function,
|
|||
const gsl_complex one = gsl_complex_rect(1,0);
|
||||
const gsl_complex zero = gsl_complex_rect(0,0);
|
||||
gsl_blas_zgemm(CblasConjTrans, CblasNoTrans, one,
|
||||
V0, A1, zero, TM2);
|
||||
V0, A1, zero, TM2);
|
||||
|
||||
|
||||
|
||||
printf(" Multiplying TM*W0T->B...\n");
|
||||
//TM2.Multiply(&W0T, &B, "--transB C"); // B <- TM2 * W0
|
||||
|
||||
|
||||
gsl_blas_zgemm(CblasNoTrans, CblasConjTrans, one,
|
||||
TM2, W0T, zero, B);
|
||||
TM2, W0T, zero, B);
|
||||
|
||||
gsl_matrix_complex_free(W0T);
|
||||
gsl_matrix_complex_free(TM2);
|
||||
|
@ -243,14 +243,14 @@ int ProcessAMatrices(BeynSolver *Solver, beyn_function_M_t M_function,
|
|||
printf(" Scaling B <- B*Sigma^{-1}\n");
|
||||
gsl_vector_complex *tmp = gsl_vector_complex_calloc(K);
|
||||
for(int i = 0; i < K; i++){
|
||||
gsl_matrix_complex_get_col(tmp, B, i);
|
||||
gsl_vector_complex_scale(tmp, gsl_complex_rect(1.0/gsl_vector_get(Sigma,i), 0));
|
||||
gsl_matrix_complex_set_col(B,i,tmp);
|
||||
gsl_matrix_complex_get_col(tmp, B, i);
|
||||
gsl_vector_complex_scale(tmp, gsl_complex_rect(1.0/gsl_vector_get(Sigma,i), 0));
|
||||
gsl_matrix_complex_set_col(B,i,tmp);
|
||||
}
|
||||
gsl_vector_complex_free(tmp);
|
||||
|
||||
//for(int m=0; m<K; m++) // B <- B * Sigma^{-1}
|
||||
|
||||
|
||||
// for(int n=0; n<K; n++)
|
||||
// B.ScaleEntry(m,n,1.0/Sigma->GetEntry(n));
|
||||
|
||||
|
@ -282,7 +282,7 @@ int ProcessAMatrices(BeynSolver *Solver, beyn_function_M_t M_function,
|
|||
));
|
||||
|
||||
gsl_matrix_complex_free(B);
|
||||
|
||||
|
||||
//B.NSEig(&Lambda, &S);
|
||||
|
||||
// V0S <- V0*S
|
||||
|
@ -333,21 +333,21 @@ int ProcessAMatrices(BeynSolver *Solver, beyn_function_M_t M_function,
|
|||
/***************************************************************/
|
||||
|
||||
int BeynSolve(BeynSolver *Solver, beyn_function_M_t M_function,
|
||||
beyn_function_M_inv_Vhat_t M_inv_Vhat_function, void *Params,
|
||||
double complex z0, double Rx, double Ry, int N)
|
||||
beyn_function_M_inv_Vhat_t M_inv_Vhat_function, void *Params,
|
||||
double complex z0, double Rx, double Ry, int N)
|
||||
{
|
||||
/***************************************************************/
|
||||
/* force N to be even so we can simultaneously evaluate */
|
||||
/* the integral with N/2 quadrature points */
|
||||
/***************************************************************/
|
||||
|
||||
|
||||
if ( (N%2)==1 ) N++;
|
||||
|
||||
/*if (Rx==Ry)
|
||||
printf("Applying Beyn method with z0=%s,R=%e,N=%i...\n",z2s(z0),Rx,N);
|
||||
else
|
||||
printf("Applying Beyn method with z0=%s,Rx=%e,Ry=%e,N=%i...\n",z2s(z0),Rx,Ry,N);
|
||||
*/
|
||||
printf("Applying Beyn method with z0=%s,R=%e,N=%i...\n",z2s(z0),Rx,N);
|
||||
else
|
||||
printf("Applying Beyn method with z0=%s,Rx=%e,Ry=%e,N=%i...\n",z2s(z0),Rx,Ry,N);
|
||||
*/
|
||||
const int M = Solver->M;
|
||||
const int L = Solver->L;
|
||||
gsl_matrix_complex *A0 = Solver->A0;
|
||||
|
@ -361,7 +361,7 @@ int BeynSolve(BeynSolver *Solver, beyn_function_M_t M_function,
|
|||
/* evaluate contour integrals by numerical quadrature to get */
|
||||
/* A0 and A1 matrices */
|
||||
/***************************************************************/
|
||||
|
||||
|
||||
gsl_matrix_complex_set_zero(A0);
|
||||
gsl_matrix_complex_set_zero(A1);
|
||||
gsl_matrix_complex_set_zero(A0Coarse);
|
||||
|
@ -369,69 +369,70 @@ int BeynSolve(BeynSolver *Solver, beyn_function_M_t M_function,
|
|||
double DeltaTheta = 2.0*M_PI / ((double)N);
|
||||
printf(" Evaluating contour integral (%i points)...\n",N);
|
||||
for(int n=0; n<N; n++) {
|
||||
double Theta = ((double)n)*DeltaTheta;
|
||||
double CT = cos(Theta), ST=sin(Theta);
|
||||
complex double z1 = Rx*CT + I*Ry*ST;
|
||||
complex double dz = (I*Rx*ST + Ry*CT) / N;
|
||||
double Theta = ((double)n)*DeltaTheta;
|
||||
double CT = cos(Theta), ST=sin(Theta);
|
||||
complex double z1 = Rx*CT + I*Ry*ST;
|
||||
complex double dz = (I*Rx*ST + Ry*CT) / N;
|
||||
|
||||
//MInvVHat->Copy(VHat);
|
||||
// Mitä varten tämä kopiointi on?
|
||||
gsl_matrix_complex_memcpy(MInvVHat, VHat);
|
||||
//MInvVHat->Copy(VHat);
|
||||
// Mitä varten tämä kopiointi on?
|
||||
gsl_matrix_complex_memcpy(MInvVHat, VHat);
|
||||
|
||||
// Tän pitäis kutsua eval_WT
|
||||
// Output ilmeisesti tallentuun neljänteen parametriin
|
||||
|
||||
if(M_inv_Vhat_function) {
|
||||
QPMS_ENSURE_SUCCESS(M_inv_Vhat_function(MInvVHat, VHat, z0+z1, Params));
|
||||
} else {
|
||||
lapack_int *pivot;
|
||||
gsl_matrix_complex *Mmat = gsl_matrix_complex_alloc(M,M);
|
||||
QPMS_ENSURE_SUCCESS(M_function(Mmat, z0+z1, Params));
|
||||
QPMS_CRASHING_MALLOC(pivot, sizeof(lapack_int) * M);
|
||||
QPMS_ENSURE_SUCCESS(LAPACKE_zgetrf(LAPACK_ROW_MAJOR,
|
||||
M /*m*/, M /*n*/,(lapack_complex_double *) Mmat->data /*a*/, Mmat->tda /*lda*/, pivot /*ipiv*/));
|
||||
QPMS_ENSURE(MInvVHat->tda == L, "wut?");
|
||||
QPMS_ENSURE_SUCCESS(LAPACKE_zgetrs(LAPACK_ROW_MAJOR, 'N' /*trans*/,
|
||||
M /*n*/, L/*nrhs*/, (lapack_complex_double *)(Mmat->data) /*a*/, Mmat->tda /*lda*/, pivot/*ipiv*/,
|
||||
(lapack_complex_double *)(MInvVHat->data) /*b*/, MInvVHat->tda/*ldb*/));
|
||||
// Tän pitäis kutsua eval_WT
|
||||
// Output ilmeisesti tallentuun neljänteen parametriin
|
||||
|
||||
if(M_inv_Vhat_function) {
|
||||
QPMS_ENSURE_SUCCESS(M_inv_Vhat_function(MInvVHat, VHat, z0+z1, Params));
|
||||
} else {
|
||||
lapack_int *pivot;
|
||||
gsl_matrix_complex *Mmat = gsl_matrix_complex_alloc(M,M);
|
||||
QPMS_ENSURE_SUCCESS(M_function(Mmat, z0+z1, Params));
|
||||
QPMS_CRASHING_MALLOC(pivot, sizeof(lapack_int) * M);
|
||||
QPMS_ENSURE_SUCCESS(LAPACKE_zgetrf(LAPACK_ROW_MAJOR,
|
||||
M /*m*/, M /*n*/,(lapack_complex_double *) Mmat->data /*a*/, Mmat->tda /*lda*/, pivot /*ipiv*/));
|
||||
QPMS_ENSURE(MInvVHat->tda == L, "wut?");
|
||||
QPMS_ENSURE_SUCCESS(LAPACKE_zgetrs(LAPACK_ROW_MAJOR, 'N' /*trans*/,
|
||||
M /*n*/, L/*nrhs*/, (lapack_complex_double *)(Mmat->data) /*a*/, Mmat->tda /*lda*/, pivot/*ipiv*/,
|
||||
(lapack_complex_double *)(MInvVHat->data) /*b*/, MInvVHat->tda/*ldb*/));
|
||||
|
||||
|
||||
free(pivot);
|
||||
gsl_matrix_complex_free(Mmat);
|
||||
}
|
||||
//UserFunc(z0+zz, Params, VHat, MInvVHat);
|
||||
free(pivot);
|
||||
gsl_matrix_complex_free(Mmat);
|
||||
}
|
||||
//UserFunc(z0+zz, Params, VHat, MInvVHat);
|
||||
|
||||
gsl_matrix_complex_scale(MInvVHat, cs2g(dz));
|
||||
gsl_matrix_complex_add(A0, MInvVHat);
|
||||
if((n%2)==0) {
|
||||
gsl_matrix_complex_add(A0Coarse, MInvVHat);
|
||||
gsl_matrix_complex_add(A0Coarse, MInvVHat);
|
||||
}
|
||||
|
||||
gsl_matrix_complex_scale(MInvVHat, cs2g(z1));
|
||||
gsl_matrix_complex_add(A1, MInvVHat);
|
||||
if((n%2)==0) {
|
||||
gsl_matrix_complex_add(A1Coarse, MInvVHat);
|
||||
gsl_matrix_complex_add(A1Coarse, MInvVHat);
|
||||
}
|
||||
gsl_matrix_complex_scale(MInvVHat, cs2g(dz));
|
||||
gsl_matrix_complex_add(A0, MInvVHat);
|
||||
if((n%2)==0) {
|
||||
gsl_matrix_complex_add(A0Coarse, MInvVHat);
|
||||
gsl_matrix_complex_add(A0Coarse, MInvVHat);
|
||||
}
|
||||
|
||||
gsl_matrix_complex_scale(MInvVHat, cs2g(z1));
|
||||
gsl_matrix_complex_add(A1, MInvVHat);
|
||||
if((n%2)==0) {
|
||||
gsl_matrix_complex_add(A1Coarse, MInvVHat);
|
||||
gsl_matrix_complex_add(A1Coarse, MInvVHat);
|
||||
}
|
||||
}
|
||||
|
||||
gsl_vector_complex *Eigenvalues = Solver->Eigenvalues;
|
||||
//gsl_vector_complex *EVErrors = Solver->EVErrors;
|
||||
gsl_vector_complex *EVErrors = Solver->EVErrors;
|
||||
gsl_matrix_complex *Eigenvectors = Solver->Eigenvectors;
|
||||
|
||||
int K = ProcessAMatrices(Solver, M_function, Params, A0, A1, z0, Eigenvalues, Eigenvectors);
|
||||
//int KCoarse = ProcessAMatrices(Solver, UserFunc, Params, A0Coarse, A1Coarse, z0, EVErrors, Eigenvectors);
|
||||
// Log("{K,KCoarse}={%i,%i}",K,KCoarse);
|
||||
/*
|
||||
for(int k=0; k<EVErrors->N && k<Eigenvalues->N; k++)
|
||||
{ EVErrors->ZV[k] -= Eigenvalues->ZV[k];
|
||||
EVErrors->ZV[k] = cdouble( fabs(real(EVErrors->ZV[k])),
|
||||
fabs(imag(EVErrors->ZV[k]))
|
||||
);
|
||||
}
|
||||
int KCoarse = ProcessAMatrices(Solver, M_function, Params, A0Coarse, A1Coarse, z0, EVErrors, Eigenvectors);
|
||||
// Log("{K,KCoarse}={%i,%i}",K,KCoarse);
|
||||
gsl_blas_zaxpy(gsl_complex_rect(-1,0), Eigenvalues, EVErrors);
|
||||
#if 0
|
||||
for(size_t k = 0; k < EVErrors->size && k < Eigenvalues->size; ++k) {
|
||||
|
||||
*/
|
||||
EVErrors->ZV[k] -= Eigenvalues->ZV[k];
|
||||
EVErrors->ZV[k] = cdouble( fabs(real(EVErrors->ZV[k])),
|
||||
fabs(imag(EVErrors->ZV[k]))
|
||||
);
|
||||
}
|
||||
#endif
|
||||
return K;
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue