From 1f8d146b13d1a84fb2317478f36393f54b2af223 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marek=20Ne=C4=8Dada?= Date: Tue, 23 Jul 2019 20:38:35 +0300 Subject: [PATCH] Quaternion fix constants, approximate equality tests etc. Former-commit-id: 91528cd0141572528a149bbbed074e17a1c19f58 --- qpms/wigner.h | 65 +++++++++++++++++++++++++++++++++++++++++++++++---- 1 file changed, 60 insertions(+), 5 deletions(-) diff --git a/qpms/wigner.h b/qpms/wigner.h index 5328b56..5449c0a 100644 --- a/qpms/wigner.h +++ b/qpms/wigner.h @@ -45,6 +45,14 @@ static inline qpms_quat_t qpms_quat_add(qpms_quat_t p, qpms_quat_t q) { return r; } +/// Quaternion substraction. +static inline qpms_quat_t qpms_quat_sub(qpms_quat_t p, qpms_quat_t q) { + qpms_quat_t r; + r.a = p.a-q.a; + r.b = p.b-q.b; + return r; +} + /// Exponential function of a quaternion \f$e^Q$\f. static inline qpms_quat_t qpms_quat_exp(const qpms_quat_t q) { const qpms_quat4d_t q4 = qpms_quat_4d_from_2c(q); @@ -62,10 +70,14 @@ static inline qpms_quat_t qpms_quat_rscale(double s, qpms_quat_t q) { } // quaternion "basis" -static const qpms_quat_t qpms_quat_1 = {1, 0}; -static const qpms_quat_t qpms_quat_i = {I, 0}; -static const qpms_quat_t qpms_quat_j = {0, 1}; -static const qpms_quat_t qpms_quat_k = {0, I}; +/// Quaternion real unit. +static const qpms_quat_t QPMS_QUAT_1 = {1, 0}; +/// Quaternion imaginary unit i. +static const qpms_quat_t QPMS_QUAT_I = {0, I}; +/// Quaternion imaginury unik j. +static const qpms_quat_t QPMS_QUAT_J = {0, 1}; +/// Quaternion imaginary unit k. +static const qpms_quat_t QPMS_QUAT_K = {I, 0}; /// Quaternion conjugation. static inline qpms_quat_t qpms_quat_conj(const qpms_quat_t q) { @@ -78,6 +90,11 @@ static inline double qpms_quat_norm(const qpms_quat_t q) { return sqrt(creal(q.a * conj(q.a) + q.b * conj(q.b))); } +/// Test approximate equality of quaternions. +static inline bool qpms_quat_isclose(const qpms_quat_t p, const qpms_quat_t q, double atol) { + return qpms_quat_norm(qpms_quat_sub(p,q)) <= atol; +} + /// Norm of the quaternion imaginary (vector) part. static inline double qpms_quat_imnorm(const qpms_quat_t q) { const double z = cimag(q.a), x = cimag(q.b), y = creal(q.b); @@ -113,7 +130,6 @@ static inline qpms_quat_t qpms_quat_pow(const qpms_quat_t q, const double expone return qpms_quat_exp(qe); } - /// Quaternion inversion. /** \f[ q^{-1} = \frac{q*}{|q|}. \f] */ static inline qpms_quat_t qpms_quat_inv(const qpms_quat_t q) { @@ -195,6 +211,11 @@ static inline qpms_irot3_t qpms_irot3_pow(const qpms_irot3_t p, int n) { return r; } +/// Test approximate equality of irot3. +static inline bool qpms_irot3_isclose(const qpms_irot3_t p, const qpms_irot3_t q, double atol) { + return qpms_quat_isclose(p.rot, q.rot, atol) && p.det == q.det; +} + /// Apply an improper rotation onto a 3d cartesian vector. static inline cart3_t qpms_irot3_apply_cart3(const qpms_irot3_t p, const cart3_t v) { #ifndef NDEBUG @@ -203,4 +224,38 @@ static inline cart3_t qpms_irot3_apply_cart3(const qpms_irot3_t p, const cart3_t return cart3_scale(p.det, qpms_quat_rot_cart3(p.rot, v)); } +// Some basic transformations with irot3 type +/// Identity +static const qpms_irot3_t QPMS_IROT3_IDENTITY = {QPMS_QUAT_1, 1}; +/// Spatial inversion. +static const qpms_irot3_t QPMS_IROT3_INVERSION = {QPMS_QUAT_1, -1}; +/// yz-plane mirror symmetry +static const qpms_irot3_t QPMS_IROT3_XFLIP = {QPMS_QUAT_I, -1}; +/// xz-plane mirror symmetry +static const qpms_irot3_t QPMS_IROT3_YFLIP = {QPMS_QUAT_J, -1}; +/// xy-plane mirror symmetry +static const qpms_irot3_t QPMS_IROT3_ZFLIP = {QPMS_QUAT_K, -1}; + +/// versor representing rotation around z-axis. +static inline qpms_quat_t qpms_quat_zrot_angle(double angle) { + qpms_quat_t q = {cexp(I*(angle/2)), 0}; + return q; +} + +/// versor representing rotation \f$ C_N^k \f$, i.e. of angle \f$ 2\pi k / N\f$ around z axis. +static inline qpms_quat_t qpms_quat_zrot_Nk(double N, double k) { + return qpms_quat_zrot_angle(M_PI * k / N); +} + +/// Rotation around z-axis. +static inline qpms_irot3_t qpms_irot3_zrot_angle(double angle) { + qpms_irot3_t q = {qpms_quat_zrot_angle(angle), 1}; + return q; +} + +/// Rotation \f$ C_N^k \f$, i.e. of angle \f$ 2\pi k / N\f$ around z axis. +static inline qpms_irot3_t qpms_irot3_zrot_Nk(double N, double k) { + return qpms_irot3_zrot_angle(M_PI * k / N); +} + #endif //QPMS_WIGNER_H