Complex wave number for ewald sum (failing) + unit test.

Former-commit-id: a6c5e566028602ecd1047bc0b44677a4eeae3046
This commit is contained in:
Marek Nečada 2019-08-19 15:10:39 +03:00
parent 02e4e9c308
commit 20fac6036f
5 changed files with 301 additions and 36 deletions

View File

@ -6,6 +6,7 @@
#include <string.h>
#include <complex.h>
#include "tiny_inlines.h"
#include "qpms_error.h"
#include <gsl/gsl_integration.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_legendre.h>
@ -173,7 +174,6 @@ void qpms_ewald3_constants_free(qpms_ewald3_constants_t *c) {
}
int ewald3_sigma0(complex double *result, double *err,
const qpms_ewald3_constants_t *c,
const double eta, const complex double k)
@ -467,7 +467,7 @@ int ewald3_sigma_long (
return ewald3_1_z_sigma_long(target, err, c, eta, k, unitcell_volume,
latdim, pgen_K, pgen_generates_shifted_points, beta, particle_shift);
// TODO 3D case and general 2D case
else abort(); // NOT IMPLEMENTED
else QPMS_NOT_IMPLEMENTED("3D or general 2D (outside XY plane) Ewald sum.");
}
struct sigma2_integrand_params {

View File

@ -857,7 +857,6 @@ int qpms_trans_calculator_get_AB_arrays_e31z_both_points_and_shift(const qpms_tr
#ifdef LATTICESUMS32
// N.B. alternative point generation strategy toggled by macro GEN_RSHIFTEDPOINTS
// and GEN_KSHIFTEDPOINTS.
// The results should be the same. The performance can slightly differ (especially
@ -867,7 +866,7 @@ int qpms_trans_calculator_get_AB_arrays_e32(const qpms_trans_calculator *c,
complex double * const Bdest, double * const Berr,
const ptrdiff_t deststride, const ptrdiff_t srcstride,
/* qpms_bessel_t J*/ // assume QPMS_HANKEL_PLUS
const double eta, const double k,
const double eta, const complex double k,
const cart2_t b1, const cart2_t b2,
const cart2_t beta,
const cart2_t particle_shift,

View File

@ -154,43 +154,12 @@ qpms_errno_t qpms_trans_calculator_get_trans_array_lc3p(
// TODO more high-level functions with more advanced lattice generators etc. (after
// the prerequisities from lattices2d.h are implememted)
#if 0 // NI
int qpms_trans_calculator_e32_long_points_and_shift(const qpms_trans_calculator *c,
complex double *Adest_long, double *Aerr_long,
complex double *Bdest_long, double *Berr_long,
double eta, double k, double unitcell_area,
size_t npoints, const cart2_t *Kpoints,
cart2_t beta,
cart2_t particle_shift
);
int qpms_trans_calculator_e32_short_points_and_shift(const qpms_trans_calculator *c,
complex double *Adest_short, double *Aerr_short,
complex double *Bdest_short, double *Berr_short,
double eta, double k,
size_t npoints, const cart2_t *Rpoints,
cart2_t beta,
cart2_t particle_shift
);
#endif
int qpms_trans_calculator_get_AB_arrays_e32_both_points_and_shift(const qpms_trans_calculator *c,
complex double *Adest, double *Aerr,
complex double *Bdest, double *Berr,
const ptrdiff_t deststride, const ptrdiff_t srcstride,
const double eta, const double k,
const double unitcell_area,
const size_t nRpoints, const cart2_t *Rpoints,
const size_t nKpoints, const cart2_t *Kpoints,
const cart2_t beta,
const cart2_t particle_shift
);
int qpms_trans_calculator_get_AB_arrays_e32(const qpms_trans_calculator *c,
complex double *Adest, double *Aerr,
complex double *Bdest, double *Berr,
const ptrdiff_t deststride, const ptrdiff_t srcstride,
const double eta, const double k,
const double eta, const complex double k,
cart2_t b1, cart2_t b2,
const cart2_t beta,
const cart2_t particle_shift,

View File

@ -11,6 +11,20 @@ add_executable( test_single_translations_vs_calc single_translations_vs_calc.c )
target_link_libraries( test_single_translations_vs_calc qpms gsl lapacke amos m )
target_include_directories( test_single_translations_vs_calc PRIVATE .. )
add_executable( test_scalar_ewald32 test_scalar_ewald32.c )
target_link_libraries( test_scalar_ewald32 qpms gsl lapacke amos m )
target_include_directories( test_scalar_ewald32 PRIVATE .. )
add_custom_target( mytests DEPENDS test_single_translations_vs_calc test_vswf_translations test_vswf_translations_array )
add_test( NAME single_vs_array_translation_coeffs COMMAND test_single_translations_vs_calc )
add_test( NAME scalar_ewald32_realk1 COMMAND test_scalar_ewald32
# lMax b1.x b1.y b2.x b2.y wavenum.real wavenum.imag k.x k.y particle_shift.x particle_shift.y csphase rtol atol maxR maxK eta1 ...
3 1 0 0 1 2.3 0 2.7 1 0.5 0.1325 -1 1e-8 1e-10 20 160 1.5 1.6 2.5 2.6
)
add_test( NAME scalar_ewald32_cplxk1 COMMAND test_scalar_ewald32
# lMax b1.x b1.y b2.x b2.y wavenum.real wavenum.imag k.x k.y particle_shift.x particle_shift.y csphase rtol atol maxR maxK eta1 ...
3 1 0 0 1 2.3 0.1 2.7 1 0.5 0.1325 -1 1e-8 1e-10 20 160 1.5 1.6 2.5 2.6
)

283
tests/test_scalar_ewald32.c Normal file
View File

@ -0,0 +1,283 @@
// Perform Ewald summation (2D xy-lattice in 3D space ) of SSWFs with different Ewald parameters and check whether the difference is inside the tolerance range.
// run as
// test_scalar_ewald32 lMax a1.x a1.y a2.x a2.y wavenum.real wavenum.imag k.x k.y particle_shift.x particle_shift.y csphase rtol atol maxR maxK eta1 [eta2 [eta 3 ...]]
// c99 -o ewaldshift3g_vargeom -ggdb -Wall -I ../ ewaldshift3g_vargeom.c ../qpms/ewald.c ../qpms/ewaldsf.c ../qpms/lattices2d.c ../qpms/latticegens.c -lgsl -lm -lblas
// implementation of the [LT(4.16)] test
#include <math.h>
#define M_SQRTPI 1.7724538509055160272981674833411452
#define M_SQRT3 1.7320508075688772935274463415058724
#include <qpms/ewald.h>
#include <qpms/tiny_inlines.h>
#include <qpms/indexing.h>
#include <stdlib.h>
#include <stdio.h>
#include <float.h>
#include <gsl/gsl_sf_legendre.h>
typedef struct ewaldtest2d_params {
qpms_l_t lMax;
point2d b1, b2;
point2d beta;
point2d particle_shift;
complex double k;
//double a;
double eta;
double maxR;
double maxK;
double csphase;
} ewaldtest2d_params;
typedef struct ewaldtest2d_results {
ewaldtest2d_params p;
complex double *sigmas_short,
*sigmas_long,
sigma0,
*sigmas_total;
double *err_sigmas_short,
*err_sigmas_long,
err_sigma0,
*err_sigmas_total;
complex double *regsigmas_416;
} ewaldtest2d_results;
void ewaldtest2d_results_free(ewaldtest2d_results *r) {
free(r->sigmas_short);
free(r->sigmas_long);
free(r->sigmas_total);
free(r->err_sigmas_long);
free(r->err_sigmas_total);
free(r->err_sigmas_short);
free(r->regsigmas_416);
free(r);
}
static inline double san(double x) {
return fabs(x) < 1e-13 ? 0 : x;
}
int isclose_cmplx(complex double a, complex double b, double rtol, double atol) {
return cabs(a-b) <= atol + rtol * .5 * (cabs(a) + cabs(b));
}
ewaldtest2d_results *ewaldtest2d(const ewaldtest2d_params p);
int main(int argc, char **argv) {
bool verbose = !!getenv("QPMS_VERBOSE_TESTS");
gsl_set_error_handler(IgnoreUnderflowsGSLErrorHandler);
QPMS_ENSURE(argc >= 18, "At least 16 arguments expected, I see only %d.", argc-1);
int netas = argc - 17;
ewaldtest2d_params plist[netas];
double atol, rtol;
plist[0].lMax = atoi(argv[1]);
plist[0].b1.x = strtod(argv[2], NULL);
plist[0].b1.y = strtod(argv[3], NULL);
plist[0].b2.x = strtod(argv[4], NULL);
plist[0].b2.y = strtod(argv[5], NULL);
plist[0].k = strtod(argv[6], NULL) + I*strtod(argv[7], NULL);
plist[0].beta.x = strtod(argv[8], NULL);
plist[0].beta.y = strtod(argv[9], NULL);
plist[0].particle_shift.x = strtod(argv[10], NULL);
plist[0].particle_shift.y = strtod(argv[11], NULL);
plist[0].csphase = strtod(argv[12], NULL);
atol = strtod(argv[13], NULL);
rtol = strtod(argv[14], NULL);
plist[0].maxR = strtod(argv[15], NULL);
plist[0].maxK = strtod(argv[16], NULL);
plist[0].eta = strtod(argv[17], NULL);
for(int i = 1; i < netas; ++i) {
plist[i] = plist[0];
plist[i].eta = strtod(argv[17+i], NULL);
}
ewaldtest2d_results *r[netas];
int fails = 0;
for (size_t i = 0; i < netas; ++i) {
ewaldtest2d_params p = plist[i];
r[i] = ewaldtest2d(p);
// TODO print per-test header here
printf("===============================\n");
printf("b1 = (%g, %g), b2 = (%g, %g)," /* "K1 = (%g, %g), K2 = (%g, %g),"*/ " Kmax = %g, Rmax = %g, lMax = %d, eta = %g, k = %g%+gj, beta = (%g,%g), ps = (%g,%g), csphase = %g\n",
p.b1.x, p.b1.y, p.b2.x, p.b2.y,/*TODO K1, K2*/ p.maxK, p.maxR, p.lMax, p.eta, creal(p.k), cimag(p.k), p.beta.x, p.beta.y, p.particle_shift.x, p.particle_shift.y, p.csphase);
printf("sigma0: %.16g%+.16gj\n", creal(r[i]->sigma0), cimag(r[i]->sigma0));
for (qpms_l_t n = 0; n <= p.lMax; ++n) {
for (qpms_m_t m = -n; m <= n; ++m){
if ((m+n)%2) continue;
qpms_y_t y = qpms_mn2y_sc(m,n);
qpms_y_t y_conj = qpms_mn2y_sc(-m,n);
// y n m sigma_total (err), regsigmas_416 regsigmas_415_recon
if (verbose) printf("%zd %d %d: T:%.16g%+.16gj(%.3g) L:%.16g%+.16gj(%.3g) S:%.16g%+.16gj(%.3g) \n"
//"| predict %.16g%+.16gj \n| actual %.16g%+.16gj\n"
,
y, n, m, creal(san(r[i]->sigmas_total[y])), san(cimag(r[i]->sigmas_total[y])),
r[i]->err_sigmas_total[y],
san(creal(r[i]->sigmas_long[y])), san(cimag(r[i]->sigmas_long[y])),
r[i]->err_sigmas_long[y],
san(creal(r[i]->sigmas_short[y])), san(cimag(r[i]->sigmas_short[y])),
r[i]->err_sigmas_short[y]
// TODO and count big differences as failures.
//san(creal(r[i]->regsigmas_416[y])), san(cimag(r[i]->regsigmas_416[y])),
//san(creal(r[i]->sigmas_total[y]) + creal(r[i]->sigmas_total[y_conj])),
//san(cimag(r[i]->sigmas_total[y]) - cimag(r[i]->sigmas_total[y_conj]))
);
}
}
}
for (size_t i = 0; i < netas; ++i) {
for (size_t j = i+1; j < netas; ++j){
for (qpms_l_t n = 0; n <= plist[i].lMax; ++n) {
for (qpms_m_t m = -n; m <= n; ++m){
if ((m+n)%2) continue;
qpms_y_t y = qpms_mn2y_sc(m,n);
qpms_y_t y_conj = qpms_mn2y_sc(-m,n);
if (!isclose_cmplx(r[i]->sigmas_total[y], r[j]->sigmas_total[y], rtol, atol)) {
++fails;
printf("with eta = %.16g:\n", plist[i].eta);
printf("%zd %d %d: T:%.16g%+.16gj(%.3g) L:%.16g%+.16gj(%.3g) S:%.16g%+.16gj(%.3g) \n"
//"| predict %.16g%+.16gj \n| actual %.16g%+.16gj\n"
,
y, n, m, creal(san(r[i]->sigmas_total[y])), san(cimag(r[i]->sigmas_total[y])),
r[i]->err_sigmas_total[y],
san(creal(r[i]->sigmas_long[y])), san(cimag(r[i]->sigmas_long[y])),
r[i]->err_sigmas_long[y],
san(creal(r[i]->sigmas_short[y])), san(cimag(r[i]->sigmas_short[y])),
r[i]->err_sigmas_short[y]
// TODO and count big differences as failures.
//san(creal(r[i]->regsigmas_416[y])), san(cimag(r[i]->regsigmas_416[y])),
//san(creal(r[i]->sigmas_total[y]) + creal(r[i]->sigmas_total[y_conj])),
//san(cimag(r[i]->sigmas_total[y]) - cimag(r[i]->sigmas_total[y_conj]))
);
printf("with eta = %.16g:\n", plist[j].eta);
printf("%zd %d %d: T:%.16g%+.16gj(%.3g) L:%.16g%+.16gj(%.3g) S:%.16g%+.16gj(%.3g) \n"
//"| predict %.16g%+.16gj \n| actual %.16g%+.16gj\n"
,
y, n, m, creal(san(r[j]->sigmas_total[y])), san(cimag(r[j]->sigmas_total[y])),
r[j]->err_sigmas_total[y],
san(creal(r[j]->sigmas_long[y])), san(cimag(r[j]->sigmas_long[y])),
r[j]->err_sigmas_long[y],
san(creal(r[j]->sigmas_short[y])), san(cimag(r[j]->sigmas_short[y])),
r[j]->err_sigmas_short[y]
// TODO and count big differences as failures.
//san(creal(r[j]->regsigmas_416[y])), san(cimag(r[j]->regsigmas_416[y])),
//san(creal(r[j]->sigmas_total[y]) + creal(r[j]->sigmas_total[y_conj])),
//san(cimag(r[j]->sigmas_total[y]) - cimag(r[j]->sigmas_total[y_conj]))
);
}
}
}
}
ewaldtest2d_results_free(r[i]);
}
return fails;
}
int ewaldtest_counter = 0;
ewaldtest2d_results *ewaldtest2d(const ewaldtest2d_params p) {
cart3_t beta3 = cart22cart3xy(p.beta);
cart3_t particle_shift3 = cart22cart3xy(p.particle_shift);
cart2_t b1 = p.b1, b2 = p.b2, rb1, rb2;
if (QPMS_SUCCESS != l2d_reciprocalBasis2pi(b1, b2, &rb1, &rb2))
abort();
const double A = l2d_unitcell_area(b1, b2); // sqrt(3) * a * a / 2.; // unit cell size
const double K_len = cart2norm(rb1)+cart2norm(rb2); //4*M_PI/a/sqrt(3); // reciprocal vector length
ewaldtest2d_results *results = malloc(sizeof(ewaldtest2d_results));
results->p = p;
// skip zeroth point if it coincides with origin
bool include_origin = !(fabs(p.particle_shift.x) == 0
&& fabs(p.particle_shift.y) == 0);
PGen Rlgen = PGen_xyWeb_new(b1, b2, BASIS_RTOL, CART2_ZERO, 0, include_origin, p.maxR, false);
//PGen Rlgen_plus_shift = PGen_xyWeb_new(b1, b2, BASIS_RTOL, cart2_scale(-1 /* CHECKSIGN */, particle_shift2), 0, include_origin, p.maxR + a, false);
PGen Klgen = PGen_xyWeb_new(rb1, rb2, BASIS_RTOL, CART2_ZERO, 0, true, p.maxK + K_len, false);
//PGen Klgen_plus_beta = PGen_xyWeb_new(rb1, rb2, BASIS_RTOL, beta2, 0, true, p.maxK + K_len, false);
qpms_y_t nelem_sc = qpms_lMax2nelem_sc(p.lMax);
results->sigmas_short = malloc(sizeof(complex double)*nelem_sc);
results->sigmas_long = malloc(sizeof(complex double)*nelem_sc);
results->sigmas_total = malloc(sizeof(complex double)*nelem_sc);
results->err_sigmas_short = malloc(sizeof(double)*nelem_sc);
results->err_sigmas_long = malloc(sizeof(double)*nelem_sc);
results->err_sigmas_total = malloc(sizeof(double)*nelem_sc);
qpms_ewald3_constants_t *c = qpms_ewald3_constants_init(p.lMax, p.csphase);
if (0!=ewald3_sigma_long(results->sigmas_long,
results->err_sigmas_long, c, p.eta, p.k, A,
LAT_2D_IN_3D_XYONLY, &Klgen, false, beta3, particle_shift3))
abort();
if (0!=ewald3_sigma_short(
results->sigmas_short, results->err_sigmas_short, c,
p.eta, p.k, LAT_2D_IN_3D_XYONLY, &Rlgen, false, beta3, particle_shift3))
abort();
if (0!=ewald3_sigma0(&(results->sigma0), &(results->err_sigma0), c, p.eta, p.k))
abort();
for(qpms_y_t y = 0; y < nelem_sc; ++y) {
results->sigmas_total[y] = results->sigmas_short[y] + results->sigmas_long[y];
results->err_sigmas_total[y] = results->err_sigmas_short[y] + results->err_sigmas_long[y];
}
results->sigmas_total[0] += results->sigma0;
results->err_sigmas_total[0] += results->err_sigma0;
// Now calculate the reference values [LT(4.16)]
results->regsigmas_416 = calloc(nelem_sc, sizeof(complex double));
results->regsigmas_416[0] = -2 * c->legendre0[gsl_sf_legendre_array_index(0,0)];
#if 0 // not yet implemented for the new API
{
double legendres[gsl_sf_legendre_array_n(p.lMax)];
points2d_rordered_t sel =
points2d_rordered_annulus(Kpoints_plus_beta, 0, true, p.k, false);
if (0 != sel.nrs)
{
point2d *beta_pq_lessthan_k = sel.base + sel.r_offsets[0];
size_t beta_pq_lessthan_k_count = sel.r_offsets[sel.nrs] - sel.r_offsets[0];
for(size_t i = 0; i < beta_pq_lessthan_k_count; ++i) {
point2d beta_pq = beta_pq_lessthan_k[i];
double rbeta_pq = cart2norm(beta_pq);
double arg_pq = atan2(beta_pq.y, beta_pq.x);
double denom = sqrt(p.k*p.k - rbeta_pq*rbeta_pq);
if( gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,
p.lMax, denom/p.k, p.csphase, legendres) != 0)
abort();
for (qpms_y_t y = 0; y < nelem_sc; ++y) {
qpms_l_t n; qpms_m_t m;
qpms_y2mn_sc_p(y, &m, &n);
if ((m+n)%2 != 0)
continue;
complex double eimf = cexp(I*m*arg_pq);
results->regsigmas_416[y] +=
4*M_PI*ipow(n)/p.k/A
* eimf * legendres[gsl_sf_legendre_array_index(n,abs(m))] * min1pow_m_neg(m)
/ denom;
}
}
}
}
#else
for(qpms_y_t y = 0; y < nelem_sc; ++y) {
qpms_l_t n; qpms_m_t m;
qpms_y2mn_sc_p(y, &m, &n);
if ((m+n)%2 != 0)
continue;
results->regsigmas_416[y] = NAN;
}
#endif
qpms_ewald3_constants_free(c);
++ewaldtest_counter;
return results;
}