Axes bugfix
Former-commit-id: 8c58c30104d142779e698646a46ca950520307c0
This commit is contained in:
parent
b6b701bd42
commit
2149a9ca71
|
@ -0,0 +1,44 @@
|
|||
|
||||
#include "translations.h"
|
||||
#include <stdio.h>
|
||||
//#include <math.h>
|
||||
#include <complex.h>
|
||||
|
||||
typedef struct {
|
||||
int m, n, mu, nu;
|
||||
sph_t kdlj;
|
||||
qpms_bessel_t J;
|
||||
complex double result_A, result_B;
|
||||
} testcase_single_trans_t;
|
||||
|
||||
testcase_single_trans_t testcases_Taylor[] = {
|
||||
#include "testcases_taylor"
|
||||
};
|
||||
|
||||
|
||||
int main() {
|
||||
int repete = 500;
|
||||
int lMax = 3;
|
||||
qpms_trans_calculator *c = qpms_trans_calculator_init(lMax, QPMS_NORMALIZATION_TAYLOR);
|
||||
for( int rr = 0; rr < repete; rr++)
|
||||
for(testcase_single_trans_t *tc = testcases_Taylor; tc->J != QPMS_BESSEL_UNDEF; tc++) {
|
||||
//if (tc->n > 40 || tc->nu > 40 ) continue;
|
||||
complex double A_array[c->nelem * c->nelem];
|
||||
complex double B_array[c->nelem * c->nelem];
|
||||
qpms_trans_calculator_get_AB_arrays(c, A_array, B_array, c->nelem, 1, tc->kdlj, true, tc->J);
|
||||
#if 0
|
||||
complex double A = qpms_trans_single_A_Taylor(tc->m, tc->n, tc->mu, tc->nu, tc->kdlj, true, tc->J);
|
||||
complex double B = qpms_trans_single_B_Taylor(tc->m, tc->n, tc->mu, tc->nu, tc->kdlj, true, tc->J);
|
||||
printf("A = %.16f+%.16fj, relerr=%.16f, J=%d\n",
|
||||
creal(A), cimag(A), (0 == cabs(tc->result_A - A)) ? 0 :
|
||||
cabs(tc->result_A - A)/((cabs(A) < cabs(tc->result_A)) ? cabs(A) : cabs(tc->result_A)),
|
||||
tc->J);
|
||||
printf("B = %.16f+%.16fj, relerr=%.16f, J=%d\n",
|
||||
creal(B), cimag(B), (0 == cabs(tc->result_B - B)) ? 0 :
|
||||
cabs(tc->result_B - B)/((cabs(B) < cabs(tc->result_B)) ? cabs(B) : cabs(tc->result_B)),
|
||||
tc->J);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -665,6 +665,10 @@ int qpms_trans_calculator_get_AB_arrays_ext(const qpms_trans_calculator *c,
|
|||
#ifdef QPMS_COMPILE_PYTHON_EXTENSIONS
|
||||
#include <string.h>
|
||||
|
||||
#ifdef QPMS_USE_OMP
|
||||
#include <omp.h>
|
||||
#endif
|
||||
|
||||
int qpms_cython_trans_calculator_get_AB_arrays_loop(
|
||||
const qpms_trans_calculator *c, const qpms_bessel_t J, const int resnd,
|
||||
const int daxis, const int saxis,
|
||||
|
@ -677,13 +681,17 @@ int qpms_cython_trans_calculator_get_AB_arrays_loop(
|
|||
assert(daxis != saxis);
|
||||
assert(resnd >= 2);
|
||||
int longest_axis = 0;
|
||||
int longestshape = 1;
|
||||
const npy_intp *resultshape = A_shape, *resultstrides = A_strides;
|
||||
// TODO put some restrict's everywhere?
|
||||
for (int ax = 0; ax < resnd; ++ax){
|
||||
assert(A_shape[ax] == B_shape[ax]);
|
||||
assert(A_strides[ax] == B_strides[ax]);
|
||||
if (daxis == ax || saxis == ax) continue;
|
||||
if (A_shape[ax] > A_shape[longest_axis]) longest_axis = ax;
|
||||
if (A_shape[ax] > longestshape) {
|
||||
longest_axis = ax;
|
||||
longestshape = 1;
|
||||
}
|
||||
}
|
||||
const npy_intp longlen = resultshape[longest_axis];
|
||||
|
||||
|
@ -698,72 +706,77 @@ int qpms_cython_trans_calculator_get_AB_arrays_loop(
|
|||
innerloop_shape[longest_axis] = 1;
|
||||
innerloop_shape[daxis] = 1;
|
||||
innerloop_shape[saxis] = 1;
|
||||
|
||||
|
||||
// these are the 'strides' passed to the qpms_trans_calculator_get_AB_arrays_ext
|
||||
// function, which expects 'const double *' strides, not 'char *' ones.
|
||||
const npy_intp dstride = resultstrides[daxis] / sizeof(complex double);
|
||||
const npy_intp sstride = resultstrides[saxis] / sizeof(complex double);
|
||||
|
||||
int errval = 0;
|
||||
// TODO here start parallelisation
|
||||
npy_intp local_indices[resnd];
|
||||
memset(local_indices, 0, sizeof(local_indices));
|
||||
int errval_local = 0;
|
||||
//#pragma omp parallel
|
||||
{
|
||||
npy_intp local_indices[resnd];
|
||||
memset(local_indices, 0, sizeof(local_indices));
|
||||
int errval_local = 0;
|
||||
size_t longi;
|
||||
//#pragma omp for
|
||||
for(longi = 0; longi < longlen; ++longi) {
|
||||
// this might be done also in the inverse order, but this is more
|
||||
// 'c-contiguous' way of incrementing the indices
|
||||
int ax = resnd - 1;
|
||||
while(ax >= 0) {
|
||||
/* calculate the correct index/pointer for each array used.
|
||||
* This can be further optimized from O(resnd * total size of
|
||||
* the result array) to O(total size of the result array), but
|
||||
* fick that now
|
||||
*/
|
||||
const char *r_p = r_data + r_strides[longest_axis] * longi;
|
||||
const char *theta_p = theta_data + theta_strides[longest_axis] * longi;
|
||||
const char *phi_p = phi_data + phi_strides[longest_axis] * longi;
|
||||
const char *r_ge_d_p = r_ge_d_data + r_ge_d_strides[longest_axis] * longi;
|
||||
char *A_p = A_data + A_strides[longest_axis] * longi;
|
||||
char *B_p = B_data + B_strides[longest_axis] * longi;
|
||||
for(int i = 0; i < resnd; ++i) {
|
||||
// following two lines are probably not needed, as innerloop_shape is there 1 anyway
|
||||
// so if i == daxis, saxis, or longest_axis, local_indices[i] is zero.
|
||||
if (i == longest_axis) continue;
|
||||
if (daxis == i || saxis == i) continue;
|
||||
r_p += r_strides[i] * local_indices[i];
|
||||
theta_p += theta_strides[i] * local_indices[i];
|
||||
phi_p += phi_strides[i] * local_indices[i];
|
||||
A_p += A_strides[i] * local_indices[i];
|
||||
B_p += B_strides[i] * local_indices[i];
|
||||
}
|
||||
|
||||
for(npy_intp longi = 0; longi < longlen; ++longi) {
|
||||
// this might be done also in the inverse order, but this is more
|
||||
// 'c-contiguous' way of incrementing the indices
|
||||
int ax = resnd - 1;
|
||||
while(ax >= 0) {
|
||||
/* calculate the correct index/pointer for each array used.
|
||||
* This can be further optimized from O(resnd * total size of
|
||||
* the result array) to O(total size of the result array), but
|
||||
* fick that now
|
||||
*/
|
||||
const char *r_p = r_data + r_strides[longest_axis] * longi;
|
||||
const char *theta_p = theta_data + theta_strides[longest_axis] * longi;
|
||||
const char *phi_p = phi_data + phi_strides[longest_axis] * longi;
|
||||
const char *r_ge_d_p = r_ge_d_data + r_ge_d_strides[longest_axis] * longi;
|
||||
char *A_p = A_data + A_strides[longest_axis] * longi;
|
||||
char *B_p = B_data + B_strides[longest_axis] * longi;
|
||||
for(int i = 0; i < resnd; ++i) {
|
||||
// following two lines are probably not needed, as innerloop_shape is there 1 anyway
|
||||
// so if i == daxis, saxis, or longest_axis, local_indices[i] is zero.
|
||||
if (i == longest_axis) continue;
|
||||
if (daxis == i || saxis == i) continue;
|
||||
r_p += r_strides[i] * local_indices[i];
|
||||
theta_p += theta_strides[i] * local_indices[i];
|
||||
phi_p += phi_strides[i] * local_indices[i];
|
||||
A_p += A_strides[i] * local_indices[i];
|
||||
B_p += B_strides[i] * local_indices[i];
|
||||
// perform the actual task here
|
||||
errval_local |= qpms_trans_calculator_get_AB_arrays_ext(c, (complex double *)A_p,
|
||||
(complex double *)B_p,
|
||||
dstride, sstride,
|
||||
// FIXME change all the _ext function types to npy_... so that
|
||||
// these casts are not needed
|
||||
*((double *) r_p), *((double *) theta_p), *((double *)phi_p),
|
||||
(int)(*((npy_bool *) r_ge_d_p)), J);
|
||||
if (errval_local) abort();
|
||||
|
||||
// increment the last index 'digit' (ax is now resnd-1; we don't have do-while loop in python)
|
||||
++local_indices[ax];
|
||||
while(local_indices[ax] == innerloop_shape[ax] && ax >= 0) {
|
||||
// overflow to the next digit but stop when reached below the last one
|
||||
local_indices[ax] = 0;
|
||||
local_indices[--ax]++;
|
||||
}
|
||||
if (ax >= 0) // did not overflow, get back to the lowest index
|
||||
ax = resnd - 1;
|
||||
}
|
||||
|
||||
// perform the actual task here
|
||||
errval_local |= qpms_trans_calculator_get_AB_arrays_ext(c, (complex double *)A_p,
|
||||
(complex double *)B_p,
|
||||
dstride, sstride,
|
||||
// FIXME change all the _ext function types to npy_... so that
|
||||
// these casts are not needed
|
||||
*((double *) r_p), *((double *) theta_p), *((double *)phi_p),
|
||||
(int)(*((npy_bool *) r_ge_d_p)), J);
|
||||
if (errval_local) abort();
|
||||
|
||||
// increment the last index 'digit' (ax is now resnd-1; we don't have do-while loop in python)
|
||||
++local_indices[ax];
|
||||
while(local_indices[ax] == innerloop_shape[ax] && ax >= 0) {
|
||||
// overflow to the next digit but stop when reached below the last one
|
||||
local_indices[ax] = 0;
|
||||
local_indices[--ax]++;
|
||||
}
|
||||
if (ax >= 0) // did not overflow, get back to the lowest index
|
||||
ax = resnd - 1;
|
||||
}
|
||||
errval |= errval_local;
|
||||
}
|
||||
// FIXME when parallelizing
|
||||
int errval = errval_local;
|
||||
// TODO Here end parallelisation
|
||||
return errval;
|
||||
}
|
||||
|
||||
|
||||
#endif // QPMS_COMPILE_PYTHON_EXTENSIONS
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue