C implementation of the B translation coefficient.
Former-commit-id: f7c8930de88c1d62ac99e29e9adda4ca78aa216e
This commit is contained in:
parent
5cf2c97e6b
commit
22dd5ef874
|
@ -0,0 +1,6 @@
|
||||||
|
gaunt.c
|
||||||
|
=======
|
||||||
|
abort při určitých vstupech, např. -6 10 8 10
|
||||||
|
(ačkoliv fortran originál paří bez problémů)
|
||||||
|
|
||||||
|
|
|
@ -16,9 +16,19 @@ testcase_single_trans_t testcases_Taylor[] = {
|
||||||
|
|
||||||
int main() {
|
int main() {
|
||||||
for(testcase_single_trans_t *tc = testcases_Taylor; tc->J != QPMS_BESSEL_UNDEF; tc++) {
|
for(testcase_single_trans_t *tc = testcases_Taylor; tc->J != QPMS_BESSEL_UNDEF; tc++) {
|
||||||
complex double A = qpms_trans_single_A_Taylor(tc->m, tc->n, tc->mu, tc->nu, tc->kdlj, true, tc->J);
|
if (tc->n > 12 || tc->nu > 12 || !tc->n || !tc->nu ) continue;
|
||||||
printf("m=%d, n=%d, mu=%d, nu=%d, relerr=%.16f\n", tc->m,tc->n,tc->mu,tc->nu,
|
|
||||||
cabs(tc->result_A - A)/((cabs(A) < cabs(tc->result_A)) ? cabs(A) : cabs(tc->result_A)));
|
printf("m=%d, n=%d, mu=%d, nu=%d,\n", tc->m,tc->n,tc->mu,tc->nu);
|
||||||
|
complex double A = qpms_trans_single_A_Taylor(tc->m, tc->n, tc->mu, tc->nu, tc->kdlj, true, tc->J);
|
||||||
|
complex double B = qpms_trans_single_B_Taylor(tc->m, tc->n, tc->mu, tc->nu, tc->kdlj, true, tc->J);
|
||||||
|
printf("A = %.16f+%.16fj, relerr=%.16f, J=%d\n",
|
||||||
|
creal(A), cimag(A),
|
||||||
|
cabs(tc->result_A - A)/((cabs(A) < cabs(tc->result_A)) ? cabs(A) : cabs(tc->result_A)),
|
||||||
|
tc->J);
|
||||||
|
printf("B = %.16f+%.16fj, relerr=%.16f, J=%d\n",
|
||||||
|
creal(B), cimag(B),
|
||||||
|
cabs(tc->result_B - B)/((cabs(B) < cabs(tc->result_B)) ? cabs(B) : cabs(tc->result_B)),
|
||||||
|
tc->J);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -65,10 +65,9 @@ int qpms_sph_bessel_array(qpms_bessel_t typ, int lmax, double x, complex double
|
||||||
complex double qpms_trans_single_A_Taylor(int m, int n, int mu, int nu, sph_t kdlj,
|
complex double qpms_trans_single_A_Taylor(int m, int n, int mu, int nu, sph_t kdlj,
|
||||||
bool r_ge_d, qpms_bessel_t J) { // TODO make J enum
|
bool r_ge_d, qpms_bessel_t J) { // TODO make J enum
|
||||||
if(r_ge_d) J = QPMS_BESSEL_REGULAR;
|
if(r_ge_d) J = QPMS_BESSEL_REGULAR;
|
||||||
double exponent=(lgamma(2*n+1)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2)
|
|
||||||
+lgamma(n+nu+m-mu+1)-lgamma(n-m+1)-lgamma(nu+mu+1)
|
|
||||||
+lgamma(n+nu+1) - lgamma(2*(n+nu)+1));
|
|
||||||
double costheta = cos(kdlj.theta);
|
double costheta = cos(kdlj.theta);
|
||||||
|
|
||||||
int qmax = gaunt_q_max(-m,n,mu,nu); // nemá tu být +m?
|
int qmax = gaunt_q_max(-m,n,mu,nu); // nemá tu být +m?
|
||||||
// N.B. -m !!!!!!
|
// N.B. -m !!!!!!
|
||||||
double a1q[qmax+1];
|
double a1q[qmax+1];
|
||||||
|
@ -76,8 +75,7 @@ complex double qpms_trans_single_A_Taylor(int m, int n, int mu, int nu, sph_t kd
|
||||||
gaunt_xu(-m,n,mu,nu,qmax,a1q,&err);
|
gaunt_xu(-m,n,mu,nu,qmax,a1q,&err);
|
||||||
double a1q0 = a1q[0];
|
double a1q0 = a1q[0];
|
||||||
if (err) abort();
|
if (err) abort();
|
||||||
//double *leg = malloc(sizeof(double)*gsl_sf_legendre_array_n(n+nu));
|
|
||||||
//if (!leg) abort();
|
|
||||||
double leg[gsl_sf_legendre_array_n(n+nu)];
|
double leg[gsl_sf_legendre_array_n(n+nu)];
|
||||||
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu,costheta,-1,leg)) abort();
|
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu,costheta,-1,leg)) abort();
|
||||||
complex double bes[n+nu+1];
|
complex double bes[n+nu+1];
|
||||||
|
@ -94,8 +92,10 @@ complex double qpms_trans_single_A_Taylor(int m, int n, int mu, int nu, sph_t kd
|
||||||
complex double summandq = (n*(n+1) + nu*(nu+1) - p*(p+1)) * min1pow(q) * a1q_n * zp * Pp;
|
complex double summandq = (n*(n+1) + nu*(nu+1) - p*(p+1)) * min1pow(q) * a1q_n * zp * Pp;
|
||||||
sum += summandq;
|
sum += summandq;
|
||||||
}
|
}
|
||||||
//free(leg);
|
|
||||||
//free(bes);
|
double exponent=(lgamma(2*n+1)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2)
|
||||||
|
+lgamma(n+nu+m-mu+1)-lgamma(n-m+1)-lgamma(nu+mu+1)
|
||||||
|
+lgamma(n+nu+1) - lgamma(2*(n+nu)+1));
|
||||||
complex double presum = exp(exponent);
|
complex double presum = exp(exponent);
|
||||||
presum *= cexp(I*(mu-m)*kdlj.phi) * min1pow(m) * ipow(nu+n) / (4*n);
|
presum *= cexp(I*(mu-m)*kdlj.phi) * min1pow(m) * ipow(nu+n) / (4*n);
|
||||||
|
|
||||||
|
@ -104,3 +104,61 @@ complex double qpms_trans_single_A_Taylor(int m, int n, int mu, int nu, sph_t kd
|
||||||
return (presum / prenormratio) * sum;
|
return (presum / prenormratio) * sum;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
complex double qpms_trans_single_B_Taylor(int m, int n, int mu, int nu, sph_t kdlj,
|
||||||
|
bool r_ge_d, qpms_bessel_t J) { // TODO make J enum
|
||||||
|
if(r_ge_d) J = QPMS_BESSEL_REGULAR;
|
||||||
|
double costheta = cos(kdlj.theta);
|
||||||
|
|
||||||
|
int q2max = gaunt_q_max(-m-1,n+1,mu+1,nu);
|
||||||
|
int Qmax = gaunt_q_max(-m,n+1,mu,nu);
|
||||||
|
double a2q[q2max+1], a3q[Qmax+1], a2q0, a3q0;
|
||||||
|
int err;
|
||||||
|
if (mu == nu) {
|
||||||
|
for (int q = 0; q <= q2max; ++q)
|
||||||
|
a2q[q] = 0;
|
||||||
|
a2q0 = 1;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
gaunt_xu(-m-1,n+1,mu+1,nu,q2max,a2q,&err); if (err) abort();
|
||||||
|
a2q0 = a2q[0];
|
||||||
|
}
|
||||||
|
gaunt_xu(-m,n+1,mu,nu,Qmax,a3q,&err); if (err) abort();
|
||||||
|
a3q0 = a3q[0];
|
||||||
|
|
||||||
|
double leg[gsl_sf_legendre_array_n(n+nu+1)];
|
||||||
|
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1,costheta,-1,leg)) abort();
|
||||||
|
complex double bes[n+nu+2];
|
||||||
|
if (qpms_sph_bessel_array(J, n+nu+1, kdlj.r, bes)) abort();
|
||||||
|
|
||||||
|
complex double sum = 0;
|
||||||
|
for (int q = 0; q <= Qmax; ++q) {
|
||||||
|
int p = n+nu-2*q;
|
||||||
|
double a2q_n = a2q[q]/a2q0;
|
||||||
|
double a3q_n = a3q[q]/a3q0;
|
||||||
|
complex double zp_ = bes[p+1];
|
||||||
|
int Pp_order_ = mu-m;
|
||||||
|
if(p+1 < abs(Pp_order_)) continue; // FIXME raději nastav lépe meze
|
||||||
|
double Pp_ = leg[gsl_sf_legendre_array_index(p+1, abs(Pp_order_))];
|
||||||
|
if (Pp_order_ < 0) Pp_ *= min1pow(mu-m) * exp(lgamma(1+1+p+Pp_order_)-lgamma(1+1+p-Pp_order_));
|
||||||
|
complex double summandq = ((2*(n+1)*(nu-mu)*a2q_n
|
||||||
|
-(-nu*(nu+1) - n*(n+3) - 2*mu*(n+1)+p*(p+3))* a3q_n)
|
||||||
|
*min1pow(q) * zp_ * Pp_);
|
||||||
|
sum += summandq;
|
||||||
|
}
|
||||||
|
|
||||||
|
double exponent=(lgamma(2*n+3)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2)
|
||||||
|
+lgamma(n+nu+m-mu+2)-lgamma(n-m+1)-lgamma(nu+mu+1)
|
||||||
|
+lgamma(n+nu+2) - lgamma(2*(n+nu)+3));
|
||||||
|
complex double presum = exp(exponent);
|
||||||
|
presum *= cexp(I*(mu-m)*kdlj.phi) * min1pow(m) * ipow(nu+n+1) / (
|
||||||
|
(4*n)*(n+1)*(n+m+1));
|
||||||
|
|
||||||
|
// Taylor normalisation v2, proven to be equivalent
|
||||||
|
complex double prenormratio = ipow(nu-n) * sqrt(((2.*nu+1)/(2.*n+1))* exp(
|
||||||
|
lgamma(n+m+1)-lgamma(n-m+1)+lgamma(nu-mu+1)-lgamma(nu+mu+1)));
|
||||||
|
|
||||||
|
return (presum / prenormratio) * sum;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -20,5 +20,7 @@ int qpms_sph_bessel_array(qpms_bessel_t typ, int lmax, double x, complex double
|
||||||
complex double qpms_trans_single_A_Taylor(int m, int n, int mu, int nu, sph_t kdlj,
|
complex double qpms_trans_single_A_Taylor(int m, int n, int mu, int nu, sph_t kdlj,
|
||||||
bool r_ge_d, qpms_bessel_t J);
|
bool r_ge_d, qpms_bessel_t J);
|
||||||
|
|
||||||
|
complex double qpms_trans_single_B_Taylor(int m, int n, int mu, int nu, sph_t kdlj,
|
||||||
|
bool r_ge_d, qpms_bessel_t J);
|
||||||
|
|
||||||
#endif // QPMS_TRANSLATIONS_H
|
#endif // QPMS_TRANSLATIONS_H
|
||||||
|
|
Loading…
Reference in New Issue