[ewald] dudopráce

Former-commit-id: bd5a14007237ffcc3dbb0110da0b68914916c980
This commit is contained in:
Marek Nečada 2017-08-15 02:29:58 +00:00
parent 83fed81e24
commit 23d1248708
1 changed files with 43 additions and 4 deletions

View File

@ -187,6 +187,11 @@
\end_inset
\begin_inset FormulaMacro
\newcommand{\hgf}[4]{\mathbf{F}\left(#1,#2;#3;#4\right)}
\end_inset
\end_layout
\begin_layout Title
@ -876,6 +881,40 @@ leads to satisfactory results, as will be shown below.
Hankel transforms of the long-range parts
\end_layout
\begin_layout Standard
From REF DLMF 10.22.49
\size footnotesize
\begin_inset Formula
\begin{eqnarray*}
\Xi_{c-ik_{0}}^{q,n}(k) & \equiv & \int_{0}^{\infty}e^{-cr}e^{ik_{0}r}\left(k_{0}r\right)^{-q}J_{n}\left(kr\right)r\,\ud r\\
& = & k_{0}^{-q}\int_{0}^{\infty}r^{2-q-1}e^{-(c-ik_{0})r}J_{n}(br)\,\ud r\\
& = & k_{0}^{-q}\frac{\left(\frac{k}{2}\right)^{n}}{\left(c-ik_{0}\right)^{2-q+n}}\Gamma\left(2-q+n\right)\hgf{\frac{2-q+n}{2}}{\frac{3-q+n}{2}}{n+1}{-\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}}\\
& & \quad\Re\left(2-q+n\right)>0,\Re\left(c-ik_{0}\pm k\right)>0.
\end{eqnarray*}
\end_inset
\size default
This by itself does not provide too much insight, but fortunately the hypergeome
tric function has more comprehensive expressions for special arguments (this
is from Mathematica):
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{eqnarray*}
\Xi_{c-ik_{0}}^{1,n}(k) & = & k_{0}^{-1}k^{n}\frac{\left(1+\sqrt{1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}}\right)^{-n}\left(c-ik_{0}\right)^{-1-n}}{\sqrt{1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}}}\\
\Xi_{c-ik_{0}}^{2,n}(k) & = & k_{0}^{-2}k^{n}\frac{\left(1+\sqrt{1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}}\right)^{-n}\left(c-ik_{0}\right)^{-n}}{n},\quad n>0\\
\Xi_{c-ik_{0}}^{2,n}(k) & = & k_{0}^{-3}k^{n}\frac{\left(1+\sqrt{1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}}\right)^{-n}}{n(n^{2}-1)}
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Subsection
3d
\end_layout