Další Hankelovy transformace pro kappa=5
Former-commit-id: cc20e7f5dbf8651a81543f84ac066d011e84082b
This commit is contained in:
parent
420a6e3e12
commit
274a6642c8
|
@ -0,0 +1,4 @@
|
|||
((-5*(k^2*(-3 + Sqrt[1 + k^2/(c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2))/(k^3*Sqrt[1 + k^2/(c - I*k0)^2]) + (10*(k^2*(-3 + Sqrt[1 + k^2/(2*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2))/(k^3*Sqrt[1 + k^2/(2*c - I*k0)^2]) - (10*(k^2*(-3 + Sqrt[1 + k^2/(3*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2))/(k^3*Sqrt[1 + k^2/(3*c - I*k0)^2]) + (5*(k^2*(-3 + Sqrt[1 + k^2/(4*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2))/(k^3*Sqrt[1 + k^2/(4*c - I*k0)^2]) - (k^2*(-3 + Sqrt[1 + k^2/(5*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2)/(k^3*Sqrt[1 + k^2/(5*c - I*k0)^2]) + (k^3 - 4*k*k0^2 + (I*k*k0*(3*k^2 - 4*k0^2))/Sqrt[k^2 - k0^2])/k^4)/k0
|
||||
((-5*(Power(k,2)*(-3 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2))) + 4*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,2)))/(Power(k,3)*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2))) + (10*(Power(k,2)*(-3 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2))) + 4*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,2)))/(Power(k,3)*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2))) - (10*(Power(k,2)*(-3 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2))) + 4*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,2)))/(Power(k,3)*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2))) + (5*(Power(k,2)*(-3 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2))) + 4*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,2)))/(Power(k,3)*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2))) - (Power(k,2)*(-3 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2))) + 4*(-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,2))/(Power(k,3)*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2))) + (Power(k,3) - 4*k*Power(k0,2) + (Complex(0,1)*k*k0*(3*Power(k,2) - 4*Power(k0,2)))/Sqrt(Power(k,2) - Power(k0,2)))/Power(k,4))/k0
|
||||
SeriesData[k, Infinity, {-(1/(k*k0)), (k - (3*I)*k0)/(k*k0), (I*(3*k - (4*I)*k0))/k, (-8*k*k0 + (5*I)*k0^2)/(2*k), ((3*(5*c - I*k0)^4)/(8*k) - (5*I)/2*k0^3 - (3*(5*c - I*k0)^3*((5*c)/k - (I*k0)/k))/8 - 5*((-3*(c - I*k0)^4)/(8*k) + (3*(c - I*k0)^3*(c/k - (I*k0)/k))/8) + 10*((-3*(2*c - I*k0)^4)/(8*k) + (3*(2*c - I*k0)^3*((2*c)/k - (I*k0)/k))/8) - 10*((-3*(3*c - I*k0)^4)/(8*k) + (3*(3*c - I*k0)^3*((3*c)/k - (I*k0)/k))/8) + 5*((-3*(4*c - I*k0)^4)/(8*k) + (3*(4*c - I*k0)^3*((4*c)/k - (I*k0)/k))/8))/k0, ((-2*(5*c - I*k0)^5)/k + (9*(5*c - I*k0)^4*((5*c)/k - (I*k0)/k))/8 - 5*((2*(c - I*k0)^5)/k - (9*(c - I*k0)^4*(c/k - (I*k0)/k))/8) + 10*((2*(2*c - I*k0)^5)/k - (9*(2*c - I*k0)^4*((2*c)/k - (I*k0)/k))/8) - 10*((2*(3*c - I*k0)^5)/k - (9*(3*c - I*k0)^4*((3*c)/k - (I*k0)/k))/8) + 5*((2*(4*c - I*k0)^5)/k - (9*(4*c - I*k0)^4*((4*c)/k - (I*k0)/k))/8))/k0, ((11*(5*c - I*k0)^6)/(8*k) - (7*I)/8*k0^5 - (11*(5*c - I*k0)^5*((5*c)/k - (I*k0)/k))/8 - 5*((-11*(c - I*k0)^6)/(8*k) + (11*(c - I*k0)^5*(c/k - (I*k0)/k))/8) + 10*((-11*(2*c - I*k0)^6)/(8*k) + (11*(2*c - I*k0)^5*((2*c)/k - (I*k0)/k))/8) - 10*((-11*(3*c - I*k0)^6)/(8*k) + (11*(3*c - I*k0)^5*((3*c)/k - (I*k0)/k))/8) + 5*((-11*(4*c - I*k0)^6)/(8*k) + (11*(4*c - I*k0)^5*((4*c)/k - (I*k0)/k))/8))/k0, ((45*(c - I*k0)^6*(c/k - (I*k0)/k))/16 - (45*(2*c - I*k0)^6*((2*c)/k - (I*k0)/k))/8 + (45*(3*c - I*k0)^6*((3*c)/k - (I*k0)/k))/8 - (45*(4*c - I*k0)^6*((4*c)/k - (I*k0)/k))/16 + (9*(5*c - I*k0)^6*((5*c)/k - (I*k0)/k))/16)/k0, ((-55*(5*c - I*k0)^8)/(128*k) - (9*I)/16*k0^7 + (55*(5*c - I*k0)^7*((5*c)/k - (I*k0)/k))/128 - 5*((55*(c - I*k0)^8)/(128*k) - (55*(c - I*k0)^7*(c/k - (I*k0)/k))/128) + 10*((55*(2*c - I*k0)^8)/(128*k) - (55*(2*c - I*k0)^7*((2*c)/k - (I*k0)/k))/128) - 10*((55*(3*c - I*k0)^8)/(128*k) - (55*(3*c - I*k0)^7*((3*c)/k - (I*k0)/k))/128) + 5*((55*(4*c - I*k0)^8)/(128*k) - (55*(4*c - I*k0)^7*((4*c)/k - (I*k0)/k))/128))/k0, ((-275*(c - I*k0)^8*(c/k - (I*k0)/k))/128 + (275*(2*c - I*k0)^8*((2*c)/k - (I*k0)/k))/64 - (275*(3*c - I*k0)^8*((3*c)/k - (I*k0)/k))/64 + (275*(4*c - I*k0)^8*((4*c)/k - (I*k0)/k))/128 - (55*(5*c - I*k0)^8*((5*c)/k - (I*k0)/k))/128)/k0, ((15*(5*c - I*k0)^10)/(64*k) - (55*I)/128*k0^9 - (15*(5*c - I*k0)^9*((5*c)/k - (I*k0)/k))/64 - 5*((-15*(c - I*k0)^10)/(64*k) + (15*(c - I*k0)^9*(c/k - (I*k0)/k))/64) + 10*((-15*(2*c - I*k0)^10)/(64*k) + (15*(2*c - I*k0)^9*((2*c)/k - (I*k0)/k))/64) - 10*((-15*(3*c - I*k0)^10)/(64*k) + (15*(3*c - I*k0)^9*((3*c)/k - (I*k0)/k))/64) + 5*((-15*(4*c - I*k0)^10)/(64*k) + (15*(4*c - I*k0)^9*((4*c)/k - (I*k0)/k))/64))/k0}, 0, 11, 1]
|
||||
(k^2 - (5*(k^2*(-3 + Sqrt[1 + k^2/(c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2))/Sqrt[1 + k^2/(c - I*k0)^2] + (10*(k^2*(-3 + Sqrt[1 + k^2/(2*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2))/Sqrt[1 + k^2/(2*c - I*k0)^2] - (10*(k^2*(-3 + Sqrt[1 + k^2/(3*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2))/Sqrt[1 + k^2/(3*c - I*k0)^2] + (5*(k^2*(-3 + Sqrt[1 + k^2/(4*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2))/Sqrt[1 + k^2/(4*c - I*k0)^2] - (k^2*(-3 + Sqrt[1 + k^2/(5*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2)/Sqrt[1 + k^2/(5*c - I*k0)^2] - 4*k0^2 + (I*k0*(3*k^2 - 4*k0^2))/Sqrt[k^2 - k0^2])/(k^3*k0)
|
|
@ -0,0 +1,4 @@
|
|||
((-5*(k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4))/(k^4*Sqrt[1 + k^2/(c - I*k0)^2]*(c - I*k0)) + (10*(k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4))/(k^4*Sqrt[1 + k^2/(2*c - I*k0)^2]*(2*c - I*k0)) - (10*(k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4))/(k^4*Sqrt[1 + k^2/(3*c - I*k0)^2]*(3*c - I*k0)) + (5*(k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4))/(k^4*Sqrt[1 + k^2/(4*c - I*k0)^2]*(4*c - I*k0)) - (k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4)/(k^4*Sqrt[1 + k^2/(5*c - I*k0)^2]*(5*c - I*k0)) + ((4*I)*k*k0*(k^2 - 2*k0^2) + (k*(k^4 - 8*k^2*k0^2 + 8*k0^4))/Sqrt[k^2 - k0^2])/k^5)/k0
|
||||
((-5*(Power(k,4) - 4*Power(k,2)*(-2 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,2) - 8*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,4)))/(Power(k,4)*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2))*(c - Complex(0,1)*k0)) + (10*(Power(k,4) - 4*Power(k,2)*(-2 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,2) - 8*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,4)))/(Power(k,4)*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2))*(2*c - Complex(0,1)*k0)) - (10*(Power(k,4) - 4*Power(k,2)*(-2 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,2) - 8*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,4)))/(Power(k,4)*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2))*(3*c - Complex(0,1)*k0)) + (5*(Power(k,4) - 4*Power(k,2)*(-2 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,2) - 8*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,4)))/(Power(k,4)*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2))*(4*c - Complex(0,1)*k0)) - (Power(k,4) - 4*Power(k,2)*(-2 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,2) - 8*(-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,4))/(Power(k,4)*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2))*(5*c - Complex(0,1)*k0)) + (Complex(0,4)*k*k0*(Power(k,2) - 2*Power(k0,2)) + (k*(Power(k,4) - 8*Power(k,2)*Power(k0,2) + 8*Power(k0,4)))/Sqrt(Power(k,2) - Power(k0,2)))/Power(k,5))/k0
|
||||
SeriesData[k, Infinity, {-(1/(k*k0)), (k - (4*I)*k0)/(k*k0), (I/2*(8*k - (15*I)*k0))/k, (-15*k*k0 + (16*I)*k0^2)/(2*k), ((-8*I)*k0^3 - (5*((4*(c - I*k0)^5)/k + (3*(c - I*k0)^4*(c/k - (I*k0)/k))/8))/(c - I*k0) + (10*((4*(2*c - I*k0)^5)/k + (3*(2*c - I*k0)^4*((2*c)/k - (I*k0)/k))/8))/(2*c - I*k0) - (10*((4*(3*c - I*k0)^5)/k + (3*(3*c - I*k0)^4*((3*c)/k - (I*k0)/k))/8))/(3*c - I*k0) + (5*((4*(4*c - I*k0)^5)/k + (3*(4*c - I*k0)^4*((4*c)/k - (I*k0)/k))/8))/(4*c - I*k0) + ((-4*(5*c - I*k0)^5)/k - (3*(5*c - I*k0)^4*((5*c)/k - (I*k0)/k))/8)/(5*c - I*k0))/k0, ((35*k0^4)/8 - (5*((3*(c - I*k0)^6)/(2*k) - (3*(c - I*k0)^5*(c/k - (I*k0)/k))/2))/(c - I*k0) + (10*((3*(2*c - I*k0)^6)/(2*k) - (3*(2*c - I*k0)^5*((2*c)/k - (I*k0)/k))/2))/(2*c - I*k0) - (10*((3*(3*c - I*k0)^6)/(2*k) - (3*(3*c - I*k0)^5*((3*c)/k - (I*k0)/k))/2))/(3*c - I*k0) + (5*((3*(4*c - I*k0)^6)/(2*k) - (3*(4*c - I*k0)^5*((4*c)/k - (I*k0)/k))/2))/(4*c - I*k0) + ((-3*(5*c - I*k0)^6)/(2*k) + (3*(5*c - I*k0)^5*((5*c)/k - (I*k0)/k))/2)/(5*c - I*k0))/k0, ((-5*((-4*(c - I*k0)^7)/k + (43*(c - I*k0)^6*(c/k - (I*k0)/k))/16))/(c - I*k0) + (10*((-4*(2*c - I*k0)^7)/k + (43*(2*c - I*k0)^6*((2*c)/k - (I*k0)/k))/16))/(2*c - I*k0) - (10*((-4*(3*c - I*k0)^7)/k + (43*(3*c - I*k0)^6*((3*c)/k - (I*k0)/k))/16))/(3*c - I*k0) + (5*((-4*(4*c - I*k0)^7)/k + (43*(4*c - I*k0)^6*((4*c)/k - (I*k0)/k))/16))/(4*c - I*k0) + ((4*(5*c - I*k0)^7)/k - (43*(5*c - I*k0)^6*((5*c)/k - (I*k0)/k))/16)/(5*c - I*k0))/k0, ((21*k0^6)/16 - (5*((5*(c - I*k0)^8)/(2*k) - (5*(c - I*k0)^7*(c/k - (I*k0)/k))/2))/(c - I*k0) + (10*((5*(2*c - I*k0)^8)/(2*k) - (5*(2*c - I*k0)^7*((2*c)/k - (I*k0)/k))/2))/(2*c - I*k0) - (10*((5*(3*c - I*k0)^8)/(2*k) - (5*(3*c - I*k0)^7*((3*c)/k - (I*k0)/k))/2))/(3*c - I*k0) + (5*((5*(4*c - I*k0)^8)/(2*k) - (5*(4*c - I*k0)^7*((4*c)/k - (I*k0)/k))/2))/(4*c - I*k0) + ((-5*(5*c - I*k0)^8)/(2*k) + (5*(5*c - I*k0)^7*((5*c)/k - (I*k0)/k))/2)/(5*c - I*k0))/k0, ((-495*(c - I*k0)^7*(c/k - (I*k0)/k))/128 + (495*(2*c - I*k0)^7*((2*c)/k - (I*k0)/k))/64 - (495*(3*c - I*k0)^7*((3*c)/k - (I*k0)/k))/64 + (495*(4*c - I*k0)^7*((4*c)/k - (I*k0)/k))/128 - (99*(5*c - I*k0)^7*((5*c)/k - (I*k0)/k))/128)/k0, ((99*k0^8)/128 - (5*((-23*(c - I*k0)^10)/(32*k) + (23*(c - I*k0)^9*(c/k - (I*k0)/k))/32))/(c - I*k0) + (10*((-23*(2*c - I*k0)^10)/(32*k) + (23*(2*c - I*k0)^9*((2*c)/k - (I*k0)/k))/32))/(2*c - I*k0) - (10*((-23*(3*c - I*k0)^10)/(32*k) + (23*(3*c - I*k0)^9*((3*c)/k - (I*k0)/k))/32))/(3*c - I*k0) + (5*((-23*(4*c - I*k0)^10)/(32*k) + (23*(4*c - I*k0)^9*((4*c)/k - (I*k0)/k))/32))/(4*c - I*k0) + ((23*(5*c - I*k0)^10)/(32*k) - (23*(5*c - I*k0)^9*((5*c)/k - (I*k0)/k))/32)/(5*c - I*k0))/k0, ((715*(c - I*k0)^9*(c/k - (I*k0)/k))/256 - (715*(2*c - I*k0)^9*((2*c)/k - (I*k0)/k))/128 + (715*(3*c - I*k0)^9*((3*c)/k - (I*k0)/k))/128 - (715*(4*c - I*k0)^9*((4*c)/k - (I*k0)/k))/256 + (143*(5*c - I*k0)^9*((5*c)/k - (I*k0)/k))/256)/k0}, 0, 11, 1]
|
||||
((-5*(k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4))/(Sqrt[1 + k^2/(c - I*k0)^2]*(c - I*k0)) + (10*(k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4))/(Sqrt[1 + k^2/(2*c - I*k0)^2]*(2*c - I*k0)) - (10*(k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4))/(Sqrt[1 + k^2/(3*c - I*k0)^2]*(3*c - I*k0)) + (5*(k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4))/(Sqrt[1 + k^2/(4*c - I*k0)^2]*(4*c - I*k0)) - (k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4)/(Sqrt[1 + k^2/(5*c - I*k0)^2]*(5*c - I*k0)) + (4*I)*k0*(k^2 - 2*k0^2) + (k^4 - 8*k^2*k0^2 + 8*k0^4)/Sqrt[k^2 - k0^2])/(k^4*k0)
|
|
@ -0,0 +1,4 @@
|
|||
((-5*(k^4*(-5 + Sqrt[1 + k^2/(c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4))/(k^5*Sqrt[1 + k^2/(c - I*k0)^2]) + (10*(k^4*(-5 + Sqrt[1 + k^2/(2*c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4))/(k^5*Sqrt[1 + k^2/(2*c - I*k0)^2]) - (10*(k^4*(-5 + Sqrt[1 + k^2/(3*c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4))/(k^5*Sqrt[1 + k^2/(3*c - I*k0)^2]) + (5*(k^4*(-5 + Sqrt[1 + k^2/(4*c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4))/(k^5*Sqrt[1 + k^2/(4*c - I*k0)^2]) - (k^4*(-5 + Sqrt[1 + k^2/(5*c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4)/(k^5*Sqrt[1 + k^2/(5*c - I*k0)^2]) + (k^5 - 12*k^3*k0^2 + 16*k*k0^4 + (I*k*k0*(5*k^4 - 20*k^2*k0^2 + 16*k0^4))/Sqrt[k^2 - k0^2])/k^6)/k0
|
||||
((-5*(Power(k,4)*(-5 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2))) + 4*Power(k,2)*(-5 + 3*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,2) + 16*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,4)))/(Power(k,5)*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2))) + (10*(Power(k,4)*(-5 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2))) + 4*Power(k,2)*(-5 + 3*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,2) + 16*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,4)))/(Power(k,5)*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2))) - (10*(Power(k,4)*(-5 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2))) + 4*Power(k,2)*(-5 + 3*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,2) + 16*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,4)))/(Power(k,5)*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2))) + (5*(Power(k,4)*(-5 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2))) + 4*Power(k,2)*(-5 + 3*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,2) + 16*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,4)))/(Power(k,5)*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2))) - (Power(k,4)*(-5 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2))) + 4*Power(k,2)*(-5 + 3*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,2) + 16*(-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,4))/(Power(k,5)*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2))) + (Power(k,5) - 12*Power(k,3)*Power(k0,2) + 16*k*Power(k0,4) + (Complex(0,1)*k*k0*(5*Power(k,4) - 20*Power(k,2)*Power(k0,2) + 16*Power(k0,4)))/Sqrt(Power(k,2) - Power(k0,2)))/Power(k,6))/k0
|
||||
SeriesData[k, Infinity, {-(1/(k*k0)), (k - (5*I)*k0)/(k*k0), (I*(5*k - (12*I)*k0))/k, (-24*k*k0 + (35*I)*k0^2)/(2*k), ((-125*(5*c - I*k0)^4)/(8*k) - (35*I)/2*k0^3 - (3*(5*c - I*k0)^3*((5*c)/k - (I*k0)/k))/8 - 5*((125*(c - I*k0)^4)/(8*k) + (3*(c - I*k0)^3*(c/k - (I*k0)/k))/8) + 10*((125*(2*c - I*k0)^4)/(8*k) + (3*(2*c - I*k0)^3*((2*c)/k - (I*k0)/k))/8) - 10*((125*(3*c - I*k0)^4)/(8*k) + (3*(3*c - I*k0)^3*((3*c)/k - (I*k0)/k))/8) + 5*((125*(4*c - I*k0)^4)/(8*k) + (3*(4*c - I*k0)^3*((4*c)/k - (I*k0)/k))/8))/k0, ((6*(5*c - I*k0)^5)/k + 16*k0^4 + (15*(5*c - I*k0)^4*((5*c)/k - (I*k0)/k))/8 - 5*((-6*(c - I*k0)^5)/k - (15*(c - I*k0)^4*(c/k - (I*k0)/k))/8) + 10*((-6*(2*c - I*k0)^5)/k - (15*(2*c - I*k0)^4*((2*c)/k - (I*k0)/k))/8) - 10*((-6*(3*c - I*k0)^5)/k - (15*(3*c - I*k0)^4*((3*c)/k - (I*k0)/k))/8) + 5*((-6*(4*c - I*k0)^5)/k - (15*(4*c - I*k0)^4*((4*c)/k - (I*k0)/k))/8))/k0, ((35*(5*c - I*k0)^6)/(8*k) + (63*I)/8*k0^5 - (35*(5*c - I*k0)^5*((5*c)/k - (I*k0)/k))/8 - 5*((-35*(c - I*k0)^6)/(8*k) + (35*(c - I*k0)^5*(c/k - (I*k0)/k))/8) + 10*((-35*(2*c - I*k0)^6)/(8*k) + (35*(2*c - I*k0)^5*((2*c)/k - (I*k0)/k))/8) - 10*((-35*(3*c - I*k0)^6)/(8*k) + (35*(3*c - I*k0)^5*((3*c)/k - (I*k0)/k))/8) + 5*((-35*(4*c - I*k0)^6)/(8*k) + (35*(4*c - I*k0)^5*((4*c)/k - (I*k0)/k))/8))/k0, ((-8*(5*c - I*k0)^7)/k + (95*(5*c - I*k0)^6*((5*c)/k - (I*k0)/k))/16 - 5*((8*(c - I*k0)^7)/k - (95*(c - I*k0)^6*(c/k - (I*k0)/k))/16) + 10*((8*(2*c - I*k0)^7)/k - (95*(2*c - I*k0)^6*((2*c)/k - (I*k0)/k))/16) - 10*((8*(3*c - I*k0)^7)/k - (95*(3*c - I*k0)^6*((3*c)/k - (I*k0)/k))/16) + 5*((8*(4*c - I*k0)^7)/k - (95*(4*c - I*k0)^6*((4*c)/k - (I*k0)/k))/16))/k0, ((585*(5*c - I*k0)^8)/(128*k) + (33*I)/16*k0^7 - (585*(5*c - I*k0)^7*((5*c)/k - (I*k0)/k))/128 - 5*((-585*(c - I*k0)^8)/(128*k) + (585*(c - I*k0)^7*(c/k - (I*k0)/k))/128) + 10*((-585*(2*c - I*k0)^8)/(128*k) + (585*(2*c - I*k0)^7*((2*c)/k - (I*k0)/k))/128) - 10*((-585*(3*c - I*k0)^8)/(128*k) + (585*(3*c - I*k0)^7*((3*c)/k - (I*k0)/k))/128) + 5*((-585*(4*c - I*k0)^8)/(128*k) + (585*(4*c - I*k0)^7*((4*c)/k - (I*k0)/k))/128))/k0, ((715*(c - I*k0)^8*(c/k - (I*k0)/k))/128 - (715*(2*c - I*k0)^8*((2*c)/k - (I*k0)/k))/64 + (715*(3*c - I*k0)^8*((3*c)/k - (I*k0)/k))/64 - (715*(4*c - I*k0)^8*((4*c)/k - (I*k0)/k))/128 + (143*(5*c - I*k0)^8*((5*c)/k - (I*k0)/k))/128)/k0, ((-77*(5*c - I*k0)^10)/(64*k) + (143*I)/128*k0^9 + (77*(5*c - I*k0)^9*((5*c)/k - (I*k0)/k))/64 - 5*((77*(c - I*k0)^10)/(64*k) - (77*(c - I*k0)^9*(c/k - (I*k0)/k))/64) + 10*((77*(2*c - I*k0)^10)/(64*k) - (77*(2*c - I*k0)^9*((2*c)/k - (I*k0)/k))/64) - 10*((77*(3*c - I*k0)^10)/(64*k) - (77*(3*c - I*k0)^9*((3*c)/k - (I*k0)/k))/64) + 5*((77*(4*c - I*k0)^10)/(64*k) - (77*(4*c - I*k0)^9*((4*c)/k - (I*k0)/k))/64))/k0}, 0, 11, 1]
|
||||
(k^4 - (5*(k^4*(-5 + Sqrt[1 + k^2/(c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4))/Sqrt[1 + k^2/(c - I*k0)^2] + (10*(k^4*(-5 + Sqrt[1 + k^2/(2*c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4))/Sqrt[1 + k^2/(2*c - I*k0)^2] - (10*(k^4*(-5 + Sqrt[1 + k^2/(3*c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4))/Sqrt[1 + k^2/(3*c - I*k0)^2] + (5*(k^4*(-5 + Sqrt[1 + k^2/(4*c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4))/Sqrt[1 + k^2/(4*c - I*k0)^2] - (k^4*(-5 + Sqrt[1 + k^2/(5*c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4)/Sqrt[1 + k^2/(5*c - I*k0)^2] - 12*k^2*k0^2 + 16*k0^4 + (I*k0*(5*k^4 - 20*k^2*k0^2 + 16*k0^4))/Sqrt[k^2 - k0^2])/(k^5*k0)
|
|
@ -0,0 +1,14 @@
|
|||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[0, k*x])/(k0^2*x), {x, 0, Infinity}, Assumptions -> n == 0 && q == 2 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0]
|
||||
Integrate((Power(E,I*k0*x)*Power(1 - Power(E,-(c*x)),5)*BesselJ(0,k*x))/(Power(k0,2)*x),List(x,0,DirectedInfinity(1)),Rule(Assumptions,n == 0 && q == 2 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0))
|
||||
|
||||
-5 c x + I k0 x c x 5 2 2 4 4 6 6 8 8 Pi 2 2 4 4 6 6 8 8
|
||||
E (-1 + E ) ((-418854310875 + 29682132480 k x - 3901685760 k x + 1258291200 k x - 2147483648 k x ) Cos[-- + k x] + 4 Sqrt[2] k x (13043905875 - 1229437440 k x + 240844800 k x - 150994944 k x + 2147483648 k x ) (Cos[k x] + Sin[k x]))
|
||||
4
|
||||
Integrate::idiv: Integral of ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ does not converge on {0, Infinity}.
|
||||
19/2 2 21/2
|
||||
8589934592 k k0 Sqrt[2 Pi] x
|
||||
Series[Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[0, k*x])/(k0^2*x), {x, 0, Infinity}, Assumptions -> n == 0 && q == 2 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0], {k, Infinity, 10}]
|
||||
|
||||
12
|
||||
Simplify::time: Time spent on a transformation exceeded -3.93292 10 seconds, and the transformation was aborted. Increasing the value of TimeConstraint option may improve the result of simplification.
|
||||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[0, k*x])/(k0^2*x), {x, 0, Infinity}, Assumptions -> n == 0 && q == 2 && κ == 5]
|
|
@ -0,0 +1,4 @@
|
|||
((-5*(k^2*(-3 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 4*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3))/(3*k^3) + (10*(k^2*(-3 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 4*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3))/(3*k^3) - (10*(k^2*(-3 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 4*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3))/(3*k^3) + (5*(k^2*(-3 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 4*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3))/(3*k^3) - (k^2*(-3 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 4*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3)/(3*k^3) + (-4*k0^2*(I*k0 + Sqrt[k^2 - k0^2]) + k^2*((3*I)*k0 + Sqrt[k^2 - k0^2]))/(3*k^3))/k0^2
|
||||
((-5*(Power(k,2)*(-3 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*(c - Complex(0,1)*k0) + 4*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,3)))/(3.*Power(k,3)) + (10*(Power(k,2)*(-3 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*(2*c - Complex(0,1)*k0) + 4*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,3)))/(3.*Power(k,3)) - (10*(Power(k,2)*(-3 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*(3*c - Complex(0,1)*k0) + 4*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,3)))/(3.*Power(k,3)) + (5*(Power(k,2)*(-3 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*(4*c - Complex(0,1)*k0) + 4*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,3)))/(3.*Power(k,3)) - (Power(k,2)*(-3 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*(5*c - Complex(0,1)*k0) + 4*(-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,3))/(3.*Power(k,3)) + (-4*Power(k0,2)*(Complex(0,1)*k0 + Sqrt(Power(k,2) - Power(k0,2))) + Power(k,2)*(Complex(0,3)*k0 + Sqrt(Power(k,2) - Power(k0,2))))/(3.*Power(k,3)))/Power(k0,2)
|
||||
SeriesData[k, Infinity, {(525*c^6)/(2*k0^2) - ((105*I)*c^5)/k0, 0, (14175*c^6)/4 - (70875*c^8)/(8*k0^2) + ((9450*I)*c^7)/k0 - (945*I)/2*c^5*k0, 0, (3465*(2025*c^10 - (3310*I)*c^9*k0 - 2250*c^8*k0^2 + (800*I)*c^7*k0^3 + 150*c^6*k0^4 - (12*I)*c^5*k0^5))/(32*k0^2)}, 6, 11, 1]
|
||||
-(5*k^2*(-3 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 20*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 - 10*k^2*(-3 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) - 40*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 10*k^2*(-3 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 40*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 - 5*k^2*(-3 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) - 20*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + k^2*(-3 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 4*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 4*k0^2*(I*k0 + Sqrt[k^2 - k0^2]) - k^2*((3*I)*k0 + Sqrt[k^2 - k0^2]))/(3*k^3*k0^2)
|
|
@ -0,0 +1,4 @@
|
|||
(-5*(1/4 - ((-2 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2)/k^2 - (2*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4)/k^4) + 10*(1/4 - ((-2 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2)/k^2 - (2*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4)/k^4) - 10*(1/4 - ((-2 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2)/k^2 - (2*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4)/k^4) + 5*(1/4 - ((-2 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2)/k^2 - (2*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4)/k^4) + ((-2 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2)/k^2 + (2*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4)/k^4 + (2*k0^3*(k0 - I*Sqrt[k^2 - k0^2]))/k^4 + (I*k0*((2*I)*k0 + Sqrt[k^2 - k0^2]))/k^2)/k0^2
|
||||
(-5*(0.25 - ((-2 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,2))/Power(k,2) - (2*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,4))/Power(k,4)) + 10*(0.25 - ((-2 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,2))/Power(k,2) - (2*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,4))/Power(k,4)) - 10*(0.25 - ((-2 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,2))/Power(k,2) - (2*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,4))/Power(k,4)) + 5*(0.25 - ((-2 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,2))/Power(k,2) - (2*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,4))/Power(k,4)) + ((-2 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,2))/Power(k,2) + (2*(-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,4))/Power(k,4) + (2*Power(k0,3)*(k0 - Complex(0,1)*Sqrt(Power(k,2) - Power(k0,2))))/Power(k,4) + (Complex(0,1)*k0*(Complex(0,2)*k0 + Sqrt(Power(k,2) - Power(k0,2))))/Power(k,2))/Power(k0,2)
|
||||
SeriesData[k, Infinity, {(105*c^5)/k0^2, 0, (945*c^5)/2 - (3150*c^7)/k0^2 + ((4725*I)/2*c^6)/k0, 0, (3465*(331*c^9 - (450*I)*c^8*k0 - 240*c^7*k0^2 + (60*I)*c^6*k0^3 + 6*c^5*k0^4))/(16*k0^2)}, 5, 11, 1]
|
||||
(5*k^2*(-2 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 10*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 - 10*k^2*(-2 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 - 20*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 + 10*k^2*(-2 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 20*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 - 5*k^2*(-2 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 - 10*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 + k^2*(-2 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 2*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 + 2*k0^3*(k0 - I*Sqrt[k^2 - k0^2]) + I*k^2*k0*((2*I)*k0 + Sqrt[k^2 - k0^2]))/(k^4*k0^2)
|
|
@ -0,0 +1,4 @@
|
|||
(-((k^4*(-5 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5)/k^5) + (2*(k^4*(-5 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5))/k^5 - (2*(k^4*(-5 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5))/k^5 + (k^4*(-5 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5)/k^5 - (k^4*(-5 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5)/(5*k^5) + (16*k0^4*(I*k0 + Sqrt[k^2 - k0^2]) + k^4*((5*I)*k0 + Sqrt[k^2 - k0^2]) - 4*k^2*k0^2*((5*I)*k0 + 3*Sqrt[k^2 - k0^2]))/(5*k^5))/k0^2
|
||||
(-((Power(k,4)*(-5 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*(c - Complex(0,1)*k0) + 4*Power(k,2)*(-5 + 3*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,3) + 16*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,5))/Power(k,5)) + (2*(Power(k,4)*(-5 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*(2*c - Complex(0,1)*k0) + 4*Power(k,2)*(-5 + 3*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,3) + 16*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,5)))/Power(k,5) - (2*(Power(k,4)*(-5 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*(3*c - Complex(0,1)*k0) + 4*Power(k,2)*(-5 + 3*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,3) + 16*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,5)))/Power(k,5) + (Power(k,4)*(-5 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*(4*c - Complex(0,1)*k0) + 4*Power(k,2)*(-5 + 3*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,3) + 16*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,5))/Power(k,5) - (Power(k,4)*(-5 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*(5*c - Complex(0,1)*k0) + 4*Power(k,2)*(-5 + 3*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,3) + 16*(-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,5))/(5.*Power(k,5)) + (16*Power(k0,4)*(Complex(0,1)*k0 + Sqrt(Power(k,2) - Power(k0,2))) + Power(k,4)*(Complex(0,5)*k0 + Sqrt(Power(k,2) - Power(k0,2))) - 4*Power(k,2)*Power(k0,2)*(Complex(0,5)*k0 + 3*Sqrt(Power(k,2) - Power(k0,2))))/(5.*Power(k,5)))/Power(k0,2)
|
||||
SeriesData[k, Infinity, {(384*c^5)/k0^2, (-4725*c^6)/(2*k0^2) + ((945*I)*c^5)/k0, 0, (-51975*c^6)/4 + (259875*c^8)/(8*k0^2) - ((34650*I)*c^7)/k0 + (3465*I)/2*c^5*k0, 0, (-9009*(2025*c^10 - (3310*I)*c^9*k0 - 2250*c^8*k0^2 + (800*I)*c^7*k0^3 + 150*c^6*k0^4 - (12*I)*c^5*k0^5))/(32*k0^2)}, 5, 11, 1]
|
||||
-(5*(k^4*(-5 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5) - 10*(k^4*(-5 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5) + 10*(k^4*(-5 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5) - 5*(k^4*(-5 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5) + k^4*(-5 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5 - 16*k0^4*(I*k0 + Sqrt[k^2 - k0^2]) - k^4*((5*I)*k0 + Sqrt[k^2 - k0^2]) + 4*k^2*k0^2*((5*I)*k0 + 3*Sqrt[k^2 - k0^2]))/(5*k^5*k0^2)
|
|
@ -0,0 +1,13 @@
|
|||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[0, k*x])/(k0^3*x^2), {x, 0, Infinity}, Assumptions -> n == 0 && q == 3 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0]
|
||||
Integrate((Power(E,I*k0*x)*Power(1 - Power(E,-(c*x)),5)*BesselJ(0,k*x))/(Power(k0,3)*Power(x,2)),List(x,0,DirectedInfinity(1)),Rule(Assumptions,n == 0 && q == 3 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0))
|
||||
|
||||
I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x 2 Pi -5 c x + I k0 x 2 Pi -4 c x + I k0 x 2 Pi -3 c x + I k0 x 2 Pi -2 c x + I k0 x 2 Pi -(c x) + I k0 x 2 Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi
|
||||
13043905875 E Cos[-- - k x] 13043905875 E Cos[-- - k x] 65219529375 E Cos[-- - k x] 65219529375 E Cos[-- - k x] 65219529375 E Cos[-- - k x] 65219529375 E Cos[-- - k x] 2401245 E Cos[-- - k x] 2401245 E Cos[-- - k x] 12006225 E Cos[-- - k x] 12006225 E Cos[-- - k x] 12006225 E Cos[-- - k x] 12006225 E Cos[-- - k x] 3675 E Cos[-- - k x] 3675 E Cos[-- - k x] 18375 E Cos[-- - k x] 18375 E Cos[-- - k x] 18375 E Cos[-- - k x] 18375 E Cos[-- - k x] 9 E Cos[-- - k x] 9 E Cos[-- - k x] 45 E Cos[-- - k x] 45 E Cos[-- - k x] 45 E Cos[-- - k x] 45 E Cos[-- - k x] E Sqrt[--] Cos[-- - k x] E Sqrt[--] Cos[-- - k x] 5 E Sqrt[--] Cos[-- - k x] 10 E Sqrt[--] Cos[-- - k x] 10 E Sqrt[--] Cos[-- - k x] 5 E Sqrt[--] Cos[-- - k x] 418854310875 E Sin[-- - k x] 418854310875 E Sin[-- - k x] 2094271554375 E Sin[-- - k x] 2094271554375 E Sin[-- - k x] 2094271554375 E Sin[-- - k x] 2094271554375 E Sin[-- - k x] 57972915 E Sin[-- - k x] 57972915 E Sin[-- - k x] 289864575 E Sin[-- - k x] 289864575 E Sin[-- - k x] 289864575 E Sin[-- - k x] 289864575 E Sin[-- - k x] 59535 E Sin[-- - k x] 59535 E Sin[-- - k x] 297675 E Sin[-- - k x] 297675 E Sin[-- - k x] 297675 E Sin[-- - k x] 297675 E Sin[-- - k x] 75 E Sin[-- - k x] 75 E Sin[-- - k x] 375 E Sin[-- - k x] 375 E Sin[-- - k x] 375 E Sin[-- - k x] 375 E Sin[-- - k x] E Sin[-- - k x] E Sin[-- - k x] 5 E Sin[-- - k x] 5 E Sin[-- - k x] 5 E Sin[-- - k x] 5 E Sin[-- - k x]
|
||||
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
|
||||
Integrate::idiv: Integral of ------------------------------------- - ------------------------------------------ + ------------------------------------------ - ------------------------------------------ + ------------------------------------------ - ------------------------------------------ - ---------------------------------- + -------------------------------------- - --------------------------------------- + --------------------------------------- - --------------------------------------- + --------------------------------------- + ------------------------------- - ----------------------------------- + ------------------------------------ - ------------------------------------ + ------------------------------------ - ------------------------------------ - --------------------------- + -------------------------------- - --------------------------------- + --------------------------------- - --------------------------------- + --------------------------------- + ------------------------------ - --------------------------------------- + ----------------------------------------- - ------------------------------------------ + ------------------------------------------ - ----------------------------------------- - ------------------------------------- + ------------------------------------------- - -------------------------------------------- + -------------------------------------------- - -------------------------------------------- + -------------------------------------------- + ----------------------------------- - --------------------------------------- + ---------------------------------------- - ---------------------------------------- + ---------------------------------------- - ---------------------------------------- - --------------------------------- + ------------------------------------ - ------------------------------------- + ------------------------------------- - ------------------------------------- + ------------------------------------- + ----------------------------- - --------------------------------- + ---------------------------------- - ---------------------------------- + ---------------------------------- - ---------------------------------- - -------------------------- + ------------------------------ - -------------------------------- + -------------------------------- - -------------------------------- + -------------------------------- does not converge on {0, Infinity}.
|
||||
17/2 3 21/2 17/2 3 21/2 17/2 3 21/2 17/2 3 21/2 17/2 3 21/2 17/2 3 21/2 13/2 3 17/2 13/2 3 17/2 13/2 3 17/2 13/2 3 17/2 13/2 3 17/2 13/2 3 17/2 9/2 3 13/2 9/2 3 13/2 9/2 3 13/2 9/2 3 13/2 9/2 3 13/2 9/2 3 13/2 5/2 3 9/2 5/2 3 9/2 5/2 3 9/2 5/2 3 9/2 5/2 3 9/2 5/2 3 9/2 3 5/2 3 5/2 3 5/2 3 5/2 3 5/2 3 5/2 19/2 3 23/2 19/2 3 23/2 19/2 3 23/2 19/2 3 23/2 19/2 3 23/2 19/2 3 23/2 15/2 3 19/2 15/2 3 19/2 15/2 3 19/2 15/2 3 19/2 15/2 3 19/2 15/2 3 19/2 11/2 3 15/2 11/2 3 15/2 11/2 3 15/2 11/2 3 15/2 11/2 3 15/2 11/2 3 15/2 7/2 3 11/2 7/2 3 11/2 7/2 3 11/2 7/2 3 11/2 7/2 3 11/2 7/2 3 11/2 3/2 3 7/2 3/2 3 7/2 3/2 3 7/2 3/2 3 7/2 3/2 3 7/2 3/2 3 7/2
|
||||
1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x
|
||||
Series[Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[0, k*x])/(k0^3*x^2), {x, 0, Infinity}, Assumptions -> n == 0 && q == 3 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0], {k, Infinity, 10}]
|
||||
|
||||
Simplify::time: Time spent on a transformation exceeded 300. seconds, and the transformation was aborted. Increasing the value of TimeConstraint option may improve the result of simplification.
|
||||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[0, k*x])/(k0^3*x^2), {x, 0, Infinity}, Assumptions -> n == 0 && q == 3 && κ == 5]
|
|
@ -0,0 +1,13 @@
|
|||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[1, k*x])/(k0^3*x^2), {x, 0, Infinity}, Assumptions -> n == 1 && q == 3 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0]
|
||||
Integrate((Power(E,I*k0*x)*Power(1 - Power(E,-(c*x)),5)*BesselJ(1,k*x))/(Power(k0,3)*Power(x,2)),List(x,0,DirectedInfinity(1)),Rule(Assumptions,n == 1 && q == 3 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0))
|
||||
|
||||
I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x 2 Pi -5 c x + I k0 x 2 Pi -4 c x + I k0 x 2 Pi -3 c x + I k0 x 2 Pi -2 c x + I k0 x 2 Pi -(c x) + I k0 x 2 Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi
|
||||
14783093325 E Cos[-- + k x] 14783093325 E Cos[-- + k x] 73915466625 E Cos[-- + k x] 73915466625 E Cos[-- + k x] 73915466625 E Cos[-- + k x] 73915466625 E Cos[-- + k x] 2837835 E Cos[-- + k x] 2837835 E Cos[-- + k x] 14189175 E Cos[-- + k x] 14189175 E Cos[-- + k x] 14189175 E Cos[-- + k x] 14189175 E Cos[-- + k x] 4725 E Cos[-- + k x] 4725 E Cos[-- + k x] 23625 E Cos[-- + k x] 23625 E Cos[-- + k x] 23625 E Cos[-- + k x] 23625 E Cos[-- + k x] 15 E Cos[-- + k x] 15 E Cos[-- + k x] 75 E Cos[-- + k x] 75 E Cos[-- + k x] 75 E Cos[-- + k x] 75 E Cos[-- + k x] E Sqrt[--] Cos[-- + k x] E Sqrt[--] Cos[-- + k x] 5 E Sqrt[--] Cos[-- + k x] 10 E Sqrt[--] Cos[-- + k x] 10 E Sqrt[--] Cos[-- + k x] 5 E Sqrt[--] Cos[-- + k x] 468131288625 E Sin[-- + k x] 468131288625 E Sin[-- + k x] 2340656443125 E Sin[-- + k x] 2340656443125 E Sin[-- + k x] 2340656443125 E Sin[-- + k x] 2340656443125 E Sin[-- + k x] 66891825 E Sin[-- + k x] 66891825 E Sin[-- + k x] 334459125 E Sin[-- + k x] 334459125 E Sin[-- + k x] 334459125 E Sin[-- + k x] 334459125 E Sin[-- + k x] 72765 E Sin[-- + k x] 72765 E Sin[-- + k x] 363825 E Sin[-- + k x] 363825 E Sin[-- + k x] 363825 E Sin[-- + k x] 363825 E Sin[-- + k x] 105 E Sin[-- + k x] 105 E Sin[-- + k x] 525 E Sin[-- + k x] 525 E Sin[-- + k x] 525 E Sin[-- + k x] 525 E Sin[-- + k x] 3 E Sin[-- + k x] 3 E Sin[-- + k x] 15 E Sin[-- + k x] 15 E Sin[-- + k x] 15 E Sin[-- + k x] 15 E Sin[-- + k x]
|
||||
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
|
||||
Integrate::idiv: Integral of ------------------------------------- - ------------------------------------------ + ------------------------------------------ - ------------------------------------------ + ------------------------------------------ - ------------------------------------------ - ---------------------------------- + -------------------------------------- - --------------------------------------- + --------------------------------------- - --------------------------------------- + --------------------------------------- + ------------------------------- - ----------------------------------- + ------------------------------------ - ------------------------------------ + ------------------------------------ - ------------------------------------ - --------------------------- + --------------------------------- - --------------------------------- + --------------------------------- - --------------------------------- + --------------------------------- - ------------------------------ + --------------------------------------- - ----------------------------------------- + ------------------------------------------ - ------------------------------------------ + ----------------------------------------- + ------------------------------------- - ------------------------------------------- + -------------------------------------------- - -------------------------------------------- + -------------------------------------------- - -------------------------------------------- - ----------------------------------- + --------------------------------------- - ---------------------------------------- + ---------------------------------------- - ---------------------------------------- + ---------------------------------------- + --------------------------------- - ------------------------------------ + ------------------------------------- - ------------------------------------- + ------------------------------------- - ------------------------------------- - ----------------------------- + ---------------------------------- - ---------------------------------- + ---------------------------------- - ---------------------------------- + ---------------------------------- + -------------------------- - -------------------------------- + --------------------------------- - --------------------------------- + --------------------------------- - --------------------------------- does not converge on {0, Infinity}.
|
||||
17/2 3 21/2 17/2 3 21/2 17/2 3 21/2 17/2 3 21/2 17/2 3 21/2 17/2 3 21/2 13/2 3 17/2 13/2 3 17/2 13/2 3 17/2 13/2 3 17/2 13/2 3 17/2 13/2 3 17/2 9/2 3 13/2 9/2 3 13/2 9/2 3 13/2 9/2 3 13/2 9/2 3 13/2 9/2 3 13/2 5/2 3 9/2 5/2 3 9/2 5/2 3 9/2 5/2 3 9/2 5/2 3 9/2 5/2 3 9/2 3 5/2 3 5/2 3 5/2 3 5/2 3 5/2 3 5/2 19/2 3 23/2 19/2 3 23/2 19/2 3 23/2 19/2 3 23/2 19/2 3 23/2 19/2 3 23/2 15/2 3 19/2 15/2 3 19/2 15/2 3 19/2 15/2 3 19/2 15/2 3 19/2 15/2 3 19/2 11/2 3 15/2 11/2 3 15/2 11/2 3 15/2 11/2 3 15/2 11/2 3 15/2 11/2 3 15/2 7/2 3 11/2 7/2 3 11/2 7/2 3 11/2 7/2 3 11/2 7/2 3 11/2 7/2 3 11/2 3/2 3 7/2 3/2 3 7/2 3/2 3 7/2 3/2 3 7/2 3/2 3 7/2 3/2 3 7/2
|
||||
1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x
|
||||
Series[Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[1, k*x])/(k0^3*x^2), {x, 0, Infinity}, Assumptions -> n == 1 && q == 3 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0], {k, Infinity, 10}]
|
||||
|
||||
Simplify::time: Time spent on a transformation exceeded 300. seconds, and the transformation was aborted. Increasing the value of TimeConstraint option may improve the result of simplification.
|
||||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[1, k*x])/(k0^3*x^2), {x, 0, Infinity}, Assumptions -> n == 1 && q == 3 && κ == 5]
|
|
@ -0,0 +1,4 @@
|
|||
(-5*(((-3 + 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0))/6 + ((-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3)/(3*k^2)) + 10*(((-3 + 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0))/6 + ((-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3)/(3*k^2)) - 10*(((-3 + 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0))/6 + ((-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3)/(3*k^2)) + 5*(((-3 + 2*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0))/6 + ((-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3)/(3*k^2)) - ((-3 + 2*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0))/6 - ((-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3)/(3*k^2) + ((3*I)*k0 + 2*Sqrt[k^2 - k0^2] - (2*k0^2*(I*k0 + Sqrt[k^2 - k0^2]))/k^2)/6)/k0^3
|
||||
(-5*(((-3 + 2*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*(c - Complex(0,1)*k0))/6. + ((-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,3))/(3.*Power(k,2))) + 10*(((-3 + 2*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*(2*c - Complex(0,1)*k0))/6. + ((-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,3))/(3.*Power(k,2))) - 10*(((-3 + 2*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*(3*c - Complex(0,1)*k0))/6. + ((-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,3))/(3.*Power(k,2))) + 5*(((-3 + 2*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*(4*c - Complex(0,1)*k0))/6. + ((-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,3))/(3.*Power(k,2))) - ((-3 + 2*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*(5*c - Complex(0,1)*k0))/6. - ((-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,3))/(3.*Power(k,2)) + (Complex(0,3)*k0 + 2*Sqrt(Power(k,2) - Power(k0,2)) - (2*Power(k0,2)*(Complex(0,1)*k0 + Sqrt(Power(k,2) - Power(k0,2))))/Power(k,2))/6.)/Power(k0,3)
|
||||
SeriesData[k, Infinity, {(75*c^6)/(2*k0^3) - ((15*I)*c^5)/k0^2, 0, (-105*(75*c^8 - (80*I)*c^7*k0 - 30*c^6*k0^2 + (4*I)*c^5*k0^3))/(8*k0^3), 0, (315*(2025*c^10 - (3310*I)*c^9*k0 - 2250*c^8*k0^2 + (800*I)*c^7*k0^3 + 150*c^6*k0^4 - (12*I)*c^5*k0^5))/(32*k0^3)}, 5, 11, 1]
|
||||
(5*(3 - 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) - (10*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3)/k^2 + 10*(-3 + 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + (20*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3)/k^2 + 10*(3 - 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) - (20*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3)/k^2 + 5*(-3 + 2*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + (10*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3)/k^2 + (3 - 2*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) - (2*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3)/k^2 + (3*I)*k0 + 2*Sqrt[k^2 - k0^2] - (2*k0^2*(I*k0 + Sqrt[k^2 - k0^2]))/k^2)/(6*k0^3)
|
|
@ -0,0 +1,4 @@
|
|||
((-5*(3*k^4 + 4*k^2*(3 - 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4))/(24*k^3) + (5*(3*k^4 + 4*k^2*(3 - 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4))/(12*k^3) - (5*(3*k^4 + 4*k^2*(3 - 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4))/(12*k^3) + (5*(3*k^4 + 4*k^2*(3 - 2*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4))/(24*k^3) - (3*k^4 + 4*k^2*(3 - 2*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4)/(24*k^3) + (3*k^4 + 8*k0^3*(k0 - I*Sqrt[k^2 - k0^2]) + 4*k^2*k0*(-3*k0 + (2*I)*Sqrt[k^2 - k0^2]))/(24*k^3))/k0^3
|
||||
((-5*(3*Power(k,4) + 4*Power(k,2)*(3 - 2*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,2) - 8*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,4)))/(24.*Power(k,3)) + (5*(3*Power(k,4) + 4*Power(k,2)*(3 - 2*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,2) - 8*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,4)))/(12.*Power(k,3)) - (5*(3*Power(k,4) + 4*Power(k,2)*(3 - 2*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,2) - 8*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,4)))/(12.*Power(k,3)) + (5*(3*Power(k,4) + 4*Power(k,2)*(3 - 2*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,2) - 8*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,4)))/(24.*Power(k,3)) - (3*Power(k,4) + 4*Power(k,2)*(3 - 2*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,2) - 8*(-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,4))/(24.*Power(k,3)) + (3*Power(k,4) + 8*Power(k0,3)*(k0 - Complex(0,1)*Sqrt(Power(k,2) - Power(k0,2))) + 4*Power(k,2)*k0*(-3*k0 + Complex(0,2)*Sqrt(Power(k,2) - Power(k0,2))))/(24.*Power(k,3)))/Power(k0,3)
|
||||
SeriesData[k, Infinity, {(15*c^5)/k0^3, 0, (-35*(20*c^7 - (15*I)*c^6*k0 - 3*c^5*k0^2))/(2*k0^3), 0, (315*(331*c^9 - (450*I)*c^8*k0 - 240*c^7*k0^2 + (60*I)*c^6*k0^3 + 6*c^5*k0^4))/(16*k0^3), 0, (-165*(22430*c^11 - (42525*I)*c^10*k0 - 34755*c^9*k0^2 + (15750*I)*c^8*k0^3 + 4200*c^7*k0^4 - (630*I)*c^6*k0^5 - 42*c^5*k0^6))/(32*k0^3)}, 4, 11, 1]
|
||||
(5*k^2*(-3 + 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 10*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 + 10*k^2*(3 - 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 - 20*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 + 10*k^2*(-3 + 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 20*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 + 5*k^2*(3 - 2*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 - 10*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 + k^2*(-3 + 2*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 2*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 + 2*k0^3*(k0 - I*Sqrt[k^2 - k0^2]) + k^2*k0*(-3*k0 + (2*I)*Sqrt[k^2 - k0^2]))/(6*k^3*k0^3)
|
|
@ -0,0 +1,4 @@
|
|||
(-(k^4*(-15 + 4*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5)/(12*k^4) + (k^4*(-15 + 4*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5)/(6*k^4) - (k^4*(-15 + 4*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5)/(6*k^4) + (k^4*(-15 + 4*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5)/(12*k^4) - (k^4*(-15 + 4*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5)/(60*k^4) + (4*Sqrt[k^2 - k0^2]*(k^4 - 7*k^2*k0^2 + 6*k0^4) + I*(15*k^4*k0 - 40*k^2*k0^3 + 24*k0^5))/(60*k^4))/k0^3
|
||||
(-(Power(k,4)*(-15 + 4*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*(c - Complex(0,1)*k0) + 4*Power(k,2)*(-10 + 7*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,3) + 24*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,5))/(12.*Power(k,4)) + (Power(k,4)*(-15 + 4*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*(2*c - Complex(0,1)*k0) + 4*Power(k,2)*(-10 + 7*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,3) + 24*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,5))/(6.*Power(k,4)) - (Power(k,4)*(-15 + 4*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*(3*c - Complex(0,1)*k0) + 4*Power(k,2)*(-10 + 7*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,3) + 24*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,5))/(6.*Power(k,4)) + (Power(k,4)*(-15 + 4*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*(4*c - Complex(0,1)*k0) + 4*Power(k,2)*(-10 + 7*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,3) + 24*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,5))/(12.*Power(k,4)) - (Power(k,4)*(-15 + 4*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*(5*c - Complex(0,1)*k0) + 4*Power(k,2)*(-10 + 7*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,3) + 24*(-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,5))/(60.*Power(k,4)) + (4*Sqrt(Power(k,2) - Power(k0,2))*(Power(k,4) - 7*Power(k,2)*Power(k0,2) + 6*Power(k0,4)) + Complex(0,1)*(15*Power(k,4)*k0 - 40*Power(k,2)*Power(k0,3) + 24*Power(k0,5)))/(60.*Power(k,4)))/Power(k0,3)
|
||||
SeriesData[k, Infinity, {(48*c^5)/k0^3, (-525*c^6)/(2*k0^3) + ((105*I)*c^5)/k0^2, 0, (315*(75*c^8 - (80*I)*c^7*k0 - 30*c^6*k0^2 + (4*I)*c^5*k0^3))/(8*k0^3), 0, (-693*(2025*c^10 - (3310*I)*c^9*k0 - 2250*c^8*k0^2 + (800*I)*c^7*k0^3 + 150*c^6*k0^4 - (12*I)*c^5*k0^5))/(32*k0^3)}, 4, 11, 1]
|
||||
-(5*(k^4*(-15 + 4*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5) - 10*(k^4*(-15 + 4*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5) + 10*(k^4*(-15 + 4*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5) - 5*(k^4*(-15 + 4*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5) + k^4*(-15 + 4*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5 - 4*Sqrt[k^2 - k0^2]*(k^4 - 7*k^2*k0^2 + 6*k0^4) - I*(15*k^4*k0 - 40*k^2*k0^3 + 24*k0^5))/(60*k^4*k0^3)
|
|
@ -0,0 +1,4 @@
|
|||
(-(5*k^6 + 12*k^4*(5 - 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 8*k^2*(15 - 11*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 - 64*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6)/(24*k^5) + (5*k^6 + 12*k^4*(5 - 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 8*k^2*(15 - 11*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 - 64*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6)/(12*k^5) - (5*k^6 + 12*k^4*(5 - 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 8*k^2*(15 - 11*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 - 64*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6)/(12*k^5) + (5*k^6 + 12*k^4*(5 - 2*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 8*k^2*(15 - 11*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 - 64*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6)/(24*k^5) - (5*k^6 + 12*k^4*(5 - 2*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 8*k^2*(15 - 11*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 - 64*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^6)/(120*k^5) + (5*k^6 + 12*k^4*k0*(-5*k0 + (2*I)*Sqrt[k^2 - k0^2]) + 8*k^2*k0^3*(15*k0 - (11*I)*Sqrt[k^2 - k0^2]) + (64*I)*k0^5*(I*k0 + Sqrt[k^2 - k0^2]))/(120*k^5))/k0^3
|
||||
(-(5*Power(k,6) + 12*Power(k,4)*(5 - 2*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,2) + 8*Power(k,2)*(15 - 11*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,4) - 64*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,6))/(24.*Power(k,5)) + (5*Power(k,6) + 12*Power(k,4)*(5 - 2*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,2) + 8*Power(k,2)*(15 - 11*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,4) - 64*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,6))/(12.*Power(k,5)) - (5*Power(k,6) + 12*Power(k,4)*(5 - 2*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,2) + 8*Power(k,2)*(15 - 11*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,4) - 64*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,6))/(12.*Power(k,5)) + (5*Power(k,6) + 12*Power(k,4)*(5 - 2*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,2) + 8*Power(k,2)*(15 - 11*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,4) - 64*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,6))/(24.*Power(k,5)) - (5*Power(k,6) + 12*Power(k,4)*(5 - 2*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,2) + 8*Power(k,2)*(15 - 11*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,4) - 64*(-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,6))/(120.*Power(k,5)) + (5*Power(k,6) + 12*Power(k,4)*k0*(-5*k0 + Complex(0,2)*Sqrt(Power(k,2) - Power(k0,2))) + 8*Power(k,2)*Power(k0,3)*(15*k0 - Complex(0,11)*Sqrt(Power(k,2) - Power(k0,2))) + Complex(0,64)*Power(k0,5)*(Complex(0,1)*k0 + Sqrt(Power(k,2) - Power(k0,2))))/(120.*Power(k,5)))/Power(k0,3)
|
||||
SeriesData[k, Infinity, {(105*c^5)/k0^3, (-960*c^6)/k0^3 + ((384*I)*c^5)/k0^2, (315*(20*c^7 - (15*I)*c^6*k0 - 3*c^5*k0^2))/(2*k0^3), 0, (-1155*(331*c^9 - (450*I)*c^8*k0 - 240*c^7*k0^2 + (60*I)*c^6*k0^3 + 6*c^5*k0^4))/(16*k0^3), 0, (429*(22430*c^11 - (42525*I)*c^10*k0 - 34755*c^9*k0^2 + (15750*I)*c^8*k0^3 + 4200*c^7*k0^4 - (630*I)*c^6*k0^5 - 42*c^5*k0^6))/(32*k0^3)}, 4, 11, 1]
|
||||
(15*k^4*(-5 + 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 10*k^2*(-15 + 11*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 + 80*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6 + 30*k^4*(5 - 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 20*k^2*(15 - 11*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 - 160*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6 + 30*k^4*(-5 + 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 20*k^2*(-15 + 11*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 + 160*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6 + 15*k^4*(5 - 2*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 10*k^2*(15 - 11*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 - 80*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6 + 3*k^4*(-5 + 2*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 2*k^2*(-15 + 11*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 + 16*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^6 + 3*k^4*k0*(-5*k0 + (2*I)*Sqrt[k^2 - k0^2]) + 2*k^2*k0^3*(15*k0 - (11*I)*Sqrt[k^2 - k0^2]) + (16*I)*k0^5*(I*k0 + Sqrt[k^2 - k0^2]))/(30*k^5*k0^3)
|
|
@ -0,0 +1,13 @@
|
|||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[0, k*x])/(k0^4*x^3), {x, 0, Infinity}, Assumptions -> n == 0 && q == 4 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0]
|
||||
Integrate((Power(E,I*k0*x)*Power(1 - Power(E,-(c*x)),5)*BesselJ(0,k*x))/(Power(k0,4)*Power(x,3)),List(x,0,DirectedInfinity(1)),Rule(Assumptions,n == 0 && q == 4 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0))
|
||||
|
||||
I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x 2 Pi -5 c x + I k0 x 2 Pi -4 c x + I k0 x 2 Pi -3 c x + I k0 x 2 Pi -2 c x + I k0 x 2 Pi -(c x) + I k0 x 2 Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi
|
||||
13043905875 E Cos[-- - k x] 13043905875 E Cos[-- - k x] 65219529375 E Cos[-- - k x] 65219529375 E Cos[-- - k x] 65219529375 E Cos[-- - k x] 65219529375 E Cos[-- - k x] 2401245 E Cos[-- - k x] 2401245 E Cos[-- - k x] 12006225 E Cos[-- - k x] 12006225 E Cos[-- - k x] 12006225 E Cos[-- - k x] 12006225 E Cos[-- - k x] 3675 E Cos[-- - k x] 3675 E Cos[-- - k x] 18375 E Cos[-- - k x] 18375 E Cos[-- - k x] 18375 E Cos[-- - k x] 18375 E Cos[-- - k x] 9 E Cos[-- - k x] 9 E Cos[-- - k x] 45 E Cos[-- - k x] 45 E Cos[-- - k x] 45 E Cos[-- - k x] 45 E Cos[-- - k x] E Sqrt[--] Cos[-- - k x] E Sqrt[--] Cos[-- - k x] 5 E Sqrt[--] Cos[-- - k x] 10 E Sqrt[--] Cos[-- - k x] 10 E Sqrt[--] Cos[-- - k x] 5 E Sqrt[--] Cos[-- - k x] 418854310875 E Sin[-- - k x] 418854310875 E Sin[-- - k x] 2094271554375 E Sin[-- - k x] 2094271554375 E Sin[-- - k x] 2094271554375 E Sin[-- - k x] 2094271554375 E Sin[-- - k x] 57972915 E Sin[-- - k x] 57972915 E Sin[-- - k x] 289864575 E Sin[-- - k x] 289864575 E Sin[-- - k x] 289864575 E Sin[-- - k x] 289864575 E Sin[-- - k x] 59535 E Sin[-- - k x] 59535 E Sin[-- - k x] 297675 E Sin[-- - k x] 297675 E Sin[-- - k x] 297675 E Sin[-- - k x] 297675 E Sin[-- - k x] 75 E Sin[-- - k x] 75 E Sin[-- - k x] 375 E Sin[-- - k x] 375 E Sin[-- - k x] 375 E Sin[-- - k x] 375 E Sin[-- - k x] E Sin[-- - k x] E Sin[-- - k x] 5 E Sin[-- - k x] 5 E Sin[-- - k x] 5 E Sin[-- - k x] 5 E Sin[-- - k x]
|
||||
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
|
||||
Integrate::idiv: Integral of ------------------------------------- - ------------------------------------------ + ------------------------------------------ - ------------------------------------------ + ------------------------------------------ - ------------------------------------------ - ---------------------------------- + -------------------------------------- - --------------------------------------- + --------------------------------------- - --------------------------------------- + --------------------------------------- + ------------------------------- - ----------------------------------- + ------------------------------------ - ------------------------------------ + ------------------------------------ - ------------------------------------ - ---------------------------- + -------------------------------- - --------------------------------- + --------------------------------- - --------------------------------- + --------------------------------- + ------------------------------ - --------------------------------------- + ----------------------------------------- - ------------------------------------------ + ------------------------------------------ - ----------------------------------------- - ------------------------------------- + ------------------------------------------- - -------------------------------------------- + -------------------------------------------- - -------------------------------------------- + -------------------------------------------- + ----------------------------------- - --------------------------------------- + ---------------------------------------- - ---------------------------------------- + ---------------------------------------- - ---------------------------------------- - --------------------------------- + ------------------------------------ - ------------------------------------- + ------------------------------------- - ------------------------------------- + ------------------------------------- + ----------------------------- - --------------------------------- + ---------------------------------- - ---------------------------------- + ---------------------------------- - ---------------------------------- - -------------------------- + ------------------------------ - -------------------------------- + -------------------------------- - -------------------------------- + -------------------------------- does not converge on {0, Infinity}.
|
||||
17/2 4 23/2 17/2 4 23/2 17/2 4 23/2 17/2 4 23/2 17/2 4 23/2 17/2 4 23/2 13/2 4 19/2 13/2 4 19/2 13/2 4 19/2 13/2 4 19/2 13/2 4 19/2 13/2 4 19/2 9/2 4 15/2 9/2 4 15/2 9/2 4 15/2 9/2 4 15/2 9/2 4 15/2 9/2 4 15/2 5/2 4 11/2 5/2 4 11/2 5/2 4 11/2 5/2 4 11/2 5/2 4 11/2 5/2 4 11/2 4 7/2 4 7/2 4 7/2 4 7/2 4 7/2 4 7/2 19/2 4 25/2 19/2 4 25/2 19/2 4 25/2 19/2 4 25/2 19/2 4 25/2 19/2 4 25/2 15/2 4 21/2 15/2 4 21/2 15/2 4 21/2 15/2 4 21/2 15/2 4 21/2 15/2 4 21/2 11/2 4 17/2 11/2 4 17/2 11/2 4 17/2 11/2 4 17/2 11/2 4 17/2 11/2 4 17/2 7/2 4 13/2 7/2 4 13/2 7/2 4 13/2 7/2 4 13/2 7/2 4 13/2 7/2 4 13/2 3/2 4 9/2 3/2 4 9/2 3/2 4 9/2 3/2 4 9/2 3/2 4 9/2 3/2 4 9/2
|
||||
1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x
|
||||
Series[Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[0, k*x])/(k0^4*x^3), {x, 0, Infinity}, Assumptions -> n == 0 && q == 4 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0], {k, Infinity, 10}]
|
||||
|
||||
Simplify::time: Time spent on a transformation exceeded 300. seconds, and the transformation was aborted. Increasing the value of TimeConstraint option may improve the result of simplification.
|
||||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[0, k*x])/(k0^4*x^3), {x, 0, Infinity}, Assumptions -> n == 0 && q == 4 && κ == 5]
|
|
@ -0,0 +1,11 @@
|
|||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[1, k*x])/(k0^4*x^3), {x, 0, Infinity}, Assumptions -> n == 1 && q == 4 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0]
|
||||
Integrate((Power(E,I*k0*x)*Power(1 - Power(E,-(c*x)),5)*BesselJ(1,k*x))/(Power(k0,4)*Power(x,3)),List(x,0,DirectedInfinity(1)),Rule(Assumptions,n == 1 && q == 4 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0))
|
||||
|
||||
I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x 2 Pi -5 c x + I k0 x 2 Pi -4 c x + I k0 x 2 Pi -3 c x + I k0 x 2 Pi -2 c x + I k0 x 2 Pi -(c x) + I k0 x 2 Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi
|
||||
14783093325 E Cos[-- + k x] 14783093325 E Cos[-- + k x] 73915466625 E Cos[-- + k x] 73915466625 E Cos[-- + k x] 73915466625 E Cos[-- + k x] 73915466625 E Cos[-- + k x] 2837835 E Cos[-- + k x] 2837835 E Cos[-- + k x] 14189175 E Cos[-- + k x] 14189175 E Cos[-- + k x] 14189175 E Cos[-- + k x] 14189175 E Cos[-- + k x] 4725 E Cos[-- + k x] 4725 E Cos[-- + k x] 23625 E Cos[-- + k x] 23625 E Cos[-- + k x] 23625 E Cos[-- + k x] 23625 E Cos[-- + k x] 15 E Cos[-- + k x] 15 E Cos[-- + k x] 75 E Cos[-- + k x] 75 E Cos[-- + k x] 75 E Cos[-- + k x] 75 E Cos[-- + k x] E Sqrt[--] Cos[-- + k x] E Sqrt[--] Cos[-- + k x] 5 E Sqrt[--] Cos[-- + k x] 10 E Sqrt[--] Cos[-- + k x] 10 E Sqrt[--] Cos[-- + k x] 5 E Sqrt[--] Cos[-- + k x] 468131288625 E Sin[-- + k x] 468131288625 E Sin[-- + k x] 2340656443125 E Sin[-- + k x] 2340656443125 E Sin[-- + k x] 2340656443125 E Sin[-- + k x] 2340656443125 E Sin[-- + k x] 66891825 E Sin[-- + k x] 66891825 E Sin[-- + k x] 334459125 E Sin[-- + k x] 334459125 E Sin[-- + k x] 334459125 E Sin[-- + k x] 334459125 E Sin[-- + k x] 72765 E Sin[-- + k x] 72765 E Sin[-- + k x] 363825 E Sin[-- + k x] 363825 E Sin[-- + k x] 363825 E Sin[-- + k x] 363825 E Sin[-- + k x] 105 E Sin[-- + k x] 105 E Sin[-- + k x] 525 E Sin[-- + k x] 525 E Sin[-- + k x] 525 E Sin[-- + k x] 525 E Sin[-- + k x] 3 E Sin[-- + k x] 3 E Sin[-- + k x] 15 E Sin[-- + k x] 15 E Sin[-- + k x] 15 E Sin[-- + k x] 15 E Sin[-- + k x]
|
||||
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
|
||||
Integrate::idiv: Integral of ------------------------------------- - ------------------------------------------ + ------------------------------------------ - ------------------------------------------ + ------------------------------------------ - ------------------------------------------ - ---------------------------------- + -------------------------------------- - --------------------------------------- + --------------------------------------- - --------------------------------------- + --------------------------------------- + ------------------------------- - ----------------------------------- + ------------------------------------ - ------------------------------------ + ------------------------------------ - ------------------------------------ - ---------------------------- + --------------------------------- - --------------------------------- + --------------------------------- - --------------------------------- + --------------------------------- - ------------------------------ + --------------------------------------- - ----------------------------------------- + ------------------------------------------ - ------------------------------------------ + ----------------------------------------- + ------------------------------------- - ------------------------------------------- + -------------------------------------------- - -------------------------------------------- + -------------------------------------------- - -------------------------------------------- - ----------------------------------- + --------------------------------------- - ---------------------------------------- + ---------------------------------------- - ---------------------------------------- + ---------------------------------------- + --------------------------------- - ------------------------------------ + ------------------------------------- - ------------------------------------- + ------------------------------------- - ------------------------------------- - ----------------------------- + ---------------------------------- - ---------------------------------- + ---------------------------------- - ---------------------------------- + ---------------------------------- + -------------------------- - -------------------------------- + --------------------------------- - --------------------------------- + --------------------------------- - --------------------------------- does not converge on {0, Infinity}.
|
||||
17/2 4 23/2 17/2 4 23/2 17/2 4 23/2 17/2 4 23/2 17/2 4 23/2 17/2 4 23/2 13/2 4 19/2 13/2 4 19/2 13/2 4 19/2 13/2 4 19/2 13/2 4 19/2 13/2 4 19/2 9/2 4 15/2 9/2 4 15/2 9/2 4 15/2 9/2 4 15/2 9/2 4 15/2 9/2 4 15/2 5/2 4 11/2 5/2 4 11/2 5/2 4 11/2 5/2 4 11/2 5/2 4 11/2 5/2 4 11/2 4 7/2 4 7/2 4 7/2 4 7/2 4 7/2 4 7/2 19/2 4 25/2 19/2 4 25/2 19/2 4 25/2 19/2 4 25/2 19/2 4 25/2 19/2 4 25/2 15/2 4 21/2 15/2 4 21/2 15/2 4 21/2 15/2 4 21/2 15/2 4 21/2 15/2 4 21/2 11/2 4 17/2 11/2 4 17/2 11/2 4 17/2 11/2 4 17/2 11/2 4 17/2 11/2 4 17/2 7/2 4 13/2 7/2 4 13/2 7/2 4 13/2 7/2 4 13/2 7/2 4 13/2 7/2 4 13/2 3/2 4 9/2 3/2 4 9/2 3/2 4 9/2 3/2 4 9/2 3/2 4 9/2 3/2 4 9/2
|
||||
1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x
|
||||
Series[Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[1, k*x])/(k0^4*x^3), {x, 0, Infinity}, Assumptions -> n == 1 && q == 4 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0], {k, Infinity, 10}]
|
||||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[1, k*x])/(k0^4*x^3), {x, 0, Infinity}, Assumptions -> n == 1 && q == 4 && κ == 5]
|
|
@ -0,0 +1,13 @@
|
|||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[2, k*x])/(k0^4*x^3), {x, 0, Infinity}, Assumptions -> n == 2 && q == 4 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0]
|
||||
Integrate((Power(E,I*k0*x)*Power(1 - Power(E,-(c*x)),5)*BesselJ(2,k*x))/(Power(k0,4)*Power(x,3)),List(x,0,DirectedInfinity(1)),Rule(Assumptions,n == 2 && q == 4 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0))
|
||||
|
||||
I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x 2 Pi -5 c x + I k0 x 2 Pi -4 c x + I k0 x 2 Pi -3 c x + I k0 x 2 Pi -2 c x + I k0 x 2 Pi -(c x) + I k0 x 2 Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi
|
||||
-21606059475 E Cos[-- - k x] 21606059475 E Cos[-- - k x] 108030297375 E Cos[-- - k x] 108030297375 E Cos[-- - k x] 108030297375 E Cos[-- - k x] 108030297375 E Cos[-- - k x] 4729725 E Cos[-- - k x] 4729725 E Cos[-- - k x] 23648625 E Cos[-- - k x] 23648625 E Cos[-- - k x] 23648625 E Cos[-- - k x] 23648625 E Cos[-- - k x] 10395 E Cos[-- - k x] 10395 E Cos[-- - k x] 51975 E Cos[-- - k x] 51975 E Cos[-- - k x] 51975 E Cos[-- - k x] 51975 E Cos[-- - k x] 105 E Cos[-- - k x] 105 E Cos[-- - k x] 525 E Cos[-- - k x] 525 E Cos[-- - k x] 525 E Cos[-- - k x] 525 E Cos[-- - k x] E Sqrt[--] Cos[-- - k x] E Sqrt[--] Cos[-- - k x] 5 E Sqrt[--] Cos[-- - k x] 10 E Sqrt[--] Cos[-- - k x] 10 E Sqrt[--] Cos[-- - k x] 5 E Sqrt[--] Cos[-- - k x] 655383804075 E Sin[-- - k x] 655383804075 E Sin[-- - k x] 3276919020375 E Sin[-- - k x] 3276919020375 E Sin[-- - k x] 3276919020375 E Sin[-- - k x] 3276919020375 E Sin[-- - k x] 103378275 E Sin[-- - k x] 103378275 E Sin[-- - k x] 516891375 E Sin[-- - k x] 516891375 E Sin[-- - k x] 516891375 E Sin[-- - k x] 516891375 E Sin[-- - k x] 135135 E Sin[-- - k x] 135135 E Sin[-- - k x] 675675 E Sin[-- - k x] 675675 E Sin[-- - k x] 675675 E Sin[-- - k x] 675675 E Sin[-- - k x] 315 E Sin[-- - k x] 315 E Sin[-- - k x] 1575 E Sin[-- - k x] 1575 E Sin[-- - k x] 1575 E Sin[-- - k x] 1575 E Sin[-- - k x] 15 E Sin[-- - k x] 15 E Sin[-- - k x] 75 E Sin[-- - k x] 75 E Sin[-- - k x] 75 E Sin[-- - k x] 75 E Sin[-- - k x]
|
||||
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
|
||||
Integrate::idiv: Integral of ------------------------------------- + ------------------------------------------ - ------------------------------------------- + ------------------------------------------- - ------------------------------------------- + ------------------------------------------- + ---------------------------------- - -------------------------------------- + --------------------------------------- - --------------------------------------- + --------------------------------------- - --------------------------------------- - ------------------------------- + ------------------------------------ - ------------------------------------ + ------------------------------------ - ------------------------------------ + ------------------------------------ + ---------------------------- - ---------------------------------- + ---------------------------------- - ---------------------------------- + ---------------------------------- - ---------------------------------- - ------------------------------ + --------------------------------------- - ----------------------------------------- + ------------------------------------------ - ------------------------------------------ + ----------------------------------------- + ------------------------------------- - ------------------------------------------- + -------------------------------------------- - -------------------------------------------- + -------------------------------------------- - -------------------------------------------- - ----------------------------------- + ---------------------------------------- - ---------------------------------------- + ---------------------------------------- - ---------------------------------------- + ---------------------------------------- + --------------------------------- - ------------------------------------- + ------------------------------------- - ------------------------------------- + ------------------------------------- - ------------------------------------- - ----------------------------- + ---------------------------------- - ----------------------------------- + ----------------------------------- - ----------------------------------- + ----------------------------------- - -------------------------- + --------------------------------- - --------------------------------- + --------------------------------- - --------------------------------- + --------------------------------- does not converge on {0, Infinity}.
|
||||
17/2 4 23/2 17/2 4 23/2 17/2 4 23/2 17/2 4 23/2 17/2 4 23/2 17/2 4 23/2 13/2 4 19/2 13/2 4 19/2 13/2 4 19/2 13/2 4 19/2 13/2 4 19/2 13/2 4 19/2 9/2 4 15/2 9/2 4 15/2 9/2 4 15/2 9/2 4 15/2 9/2 4 15/2 9/2 4 15/2 5/2 4 11/2 5/2 4 11/2 5/2 4 11/2 5/2 4 11/2 5/2 4 11/2 5/2 4 11/2 4 7/2 4 7/2 4 7/2 4 7/2 4 7/2 4 7/2 19/2 4 25/2 19/2 4 25/2 19/2 4 25/2 19/2 4 25/2 19/2 4 25/2 19/2 4 25/2 15/2 4 21/2 15/2 4 21/2 15/2 4 21/2 15/2 4 21/2 15/2 4 21/2 15/2 4 21/2 11/2 4 17/2 11/2 4 17/2 11/2 4 17/2 11/2 4 17/2 11/2 4 17/2 11/2 4 17/2 7/2 4 13/2 7/2 4 13/2 7/2 4 13/2 7/2 4 13/2 7/2 4 13/2 7/2 4 13/2 3/2 4 9/2 3/2 4 9/2 3/2 4 9/2 3/2 4 9/2 3/2 4 9/2 3/2 4 9/2
|
||||
1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x
|
||||
Series[Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[2, k*x])/(k0^4*x^3), {x, 0, Infinity}, Assumptions -> n == 2 && q == 4 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0], {k, Infinity, 10}]
|
||||
|
||||
Simplify::time: Time spent on a transformation exceeded 300. seconds, and the transformation was aborted. Increasing the value of TimeConstraint option may improve the result of simplification.
|
||||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[2, k*x])/(k0^4*x^3), {x, 0, Infinity}, Assumptions -> n == 2 && q == 4 && κ == 5]
|
|
@ -0,0 +1,4 @@
|
|||
(-(k^4*(-15 + 8*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 4*k^2*(-5 + 4*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 8*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5)/(24*k^3) + (k^4*(-15 + 8*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 4*k^2*(-5 + 4*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 8*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5)/(12*k^3) - (k^4*(-15 + 8*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 4*k^2*(-5 + 4*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 8*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5)/(12*k^3) + (k^4*(-15 + 8*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 4*k^2*(-5 + 4*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 8*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5)/(24*k^3) - (k^4*(-15 + 8*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 4*k^2*(-5 + 4*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 8*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5)/(120*k^3) + (8*(k^2 - k0^2)^(5/2) + I*(15*k^4*k0 - 20*k^2*k0^3 + 8*k0^5))/(120*k^3))/k0^4
|
||||
(-(Power(k,4)*(-15 + 8*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*(c - Complex(0,1)*k0) + 4*Power(k,2)*(-5 + 4*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,3) + 8*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,5))/(24.*Power(k,3)) + (Power(k,4)*(-15 + 8*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*(2*c - Complex(0,1)*k0) + 4*Power(k,2)*(-5 + 4*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,3) + 8*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,5))/(12.*Power(k,3)) - (Power(k,4)*(-15 + 8*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*(3*c - Complex(0,1)*k0) + 4*Power(k,2)*(-5 + 4*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,3) + 8*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,5))/(12.*Power(k,3)) + (Power(k,4)*(-15 + 8*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*(4*c - Complex(0,1)*k0) + 4*Power(k,2)*(-5 + 4*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,3) + 8*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,5))/(24.*Power(k,3)) - (Power(k,4)*(-15 + 8*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*(5*c - Complex(0,1)*k0) + 4*Power(k,2)*(-5 + 4*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,3) + 8*(-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,5))/(120.*Power(k,3)) + (8*Power(Power(k,2) - Power(k0,2),2.5) + Complex(0,1)*(15*Power(k,4)*k0 - 20*Power(k,2)*Power(k0,3) + 8*Power(k0,5)))/(120.*Power(k,3)))/Power(k0,4)
|
||||
SeriesData[k, Infinity, {(8*c^5)/k0^4, (-75*c^6)/(2*k0^4) + ((15*I)*c^5)/k0^3, 0, (35*(75*c^8 - (80*I)*c^7*k0 - 30*c^6*k0^2 + (4*I)*c^5*k0^3))/(8*k0^4), 0, (-63*(2025*c^10 - (3310*I)*c^9*k0 - 2250*c^8*k0^2 + (800*I)*c^7*k0^3 + 150*c^6*k0^4 - (12*I)*c^5*k0^5))/(32*k0^4), 0, (165*(20900*c^12 - (44860*I)*c^11*k0 - 42525*c^10*k0^2 + (23170*I)*c^9*k0^3 + 7875*c^8*k0^4 - (1680*I)*c^7*k0^5 - 210*c^6*k0^6 + (12*I)*c^5*k0^7))/(64*k0^4)}, 3, 11, 1]
|
||||
-(5*(k^4*(-15 + 8*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 4*k^2*(-5 + 4*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 8*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5) - 10*(k^4*(-15 + 8*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 4*k^2*(-5 + 4*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 8*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5) + 10*(k^4*(-15 + 8*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 4*k^2*(-5 + 4*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 8*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5) - 5*(k^4*(-15 + 8*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 4*k^2*(-5 + 4*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 8*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5) + k^4*(-15 + 8*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 4*k^2*(-5 + 4*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 8*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5 - 8*(k^2 - k0^2)^(5/2) - I*(15*k^4*k0 - 20*k^2*k0^3 + 8*k0^5))/(120*k^3*k0^4)
|
|
@ -0,0 +1,4 @@
|
|||
(-(5*k^6 + 2*k^4*(15 - 8*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 8*k^2*(5 - 4*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 - 16*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6)/(48*k^4) + (5*k^6 + 2*k^4*(15 - 8*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 8*k^2*(5 - 4*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 - 16*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6)/(24*k^4) - (5*k^6 + 2*k^4*(15 - 8*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 8*k^2*(5 - 4*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 - 16*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6)/(24*k^4) + (5*k^6 + 2*k^4*(15 - 8*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 8*k^2*(5 - 4*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 - 16*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6)/(48*k^4) - (5*k^6 + 2*k^4*(15 - 8*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 8*k^2*(5 - 4*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 - 16*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^6)/(240*k^4) + (5*k^6 - 30*k^4*k0^2 + 40*k^2*k0^4 - 16*k0^6 + (16*I)*k0*(k^2 - k0^2)^(5/2))/(240*k^4))/k0^4
|
||||
(-(5*Power(k,6) + 2*Power(k,4)*(15 - 8*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,2) + 8*Power(k,2)*(5 - 4*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,4) - 16*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,6))/(48.*Power(k,4)) + (5*Power(k,6) + 2*Power(k,4)*(15 - 8*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,2) + 8*Power(k,2)*(5 - 4*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,4) - 16*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,6))/(24.*Power(k,4)) - (5*Power(k,6) + 2*Power(k,4)*(15 - 8*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,2) + 8*Power(k,2)*(5 - 4*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,4) - 16*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,6))/(24.*Power(k,4)) + (5*Power(k,6) + 2*Power(k,4)*(15 - 8*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,2) + 8*Power(k,2)*(5 - 4*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,4) - 16*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,6))/(48.*Power(k,4)) - (5*Power(k,6) + 2*Power(k,4)*(15 - 8*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,2) + 8*Power(k,2)*(5 - 4*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,4) - 16*(-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,6))/(240.*Power(k,4)) + (5*Power(k,6) - 30*Power(k,4)*Power(k0,2) + 40*Power(k,2)*Power(k0,4) - 16*Power(k0,6) + Complex(0,16)*k0*Power(Power(k,2) - Power(k0,2),2.5))/(240.*Power(k,4)))/Power(k0,4)
|
||||
SeriesData[k, Infinity, {(15*c^5)/k0^4, (-120*c^6)/k0^4 + ((48*I)*c^5)/k0^3, (35*(20*c^7 - (15*I)*c^6*k0 - 3*c^5*k0^2))/(2*k0^4), 0, (-105*(331*c^9 - (450*I)*c^8*k0 - 240*c^7*k0^2 + (60*I)*c^6*k0^3 + 6*c^5*k0^4))/(16*k0^4), 0, (33*(22430*c^11 - (42525*I)*c^10*k0 - 34755*c^9*k0^2 + (15750*I)*c^8*k0^3 + 4200*c^7*k0^4 - (630*I)*c^6*k0^5 - 42*c^5*k0^6))/(32*k0^4)}, 3, 11, 1]
|
||||
(5*k^4*(-15 + 8*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 20*k^2*(-5 + 4*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 + 40*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6 + 10*k^4*(15 - 8*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 40*k^2*(5 - 4*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 - 80*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6 + 10*k^4*(-15 + 8*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 40*k^2*(-5 + 4*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 + 80*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6 + 5*k^4*(15 - 8*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 20*k^2*(5 - 4*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 - 40*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6 + k^4*(-15 + 8*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 4*k^2*(-5 + 4*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 + 8*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^6 - 15*k^4*k0^2 + 20*k^2*k0^4 - 8*k0^6 + (8*I)*k0*(k^2 - k0^2)^(5/2))/(120*k^4*k0^4)
|
|
@ -0,0 +1,4 @@
|
|||
(-(k^6*(-35 + 8*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^7)/(168*k^5) + (k^6*(-35 + 8*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^7)/(84*k^5) - (k^6*(-35 + 8*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^7)/(84*k^5) + (k^6*(-35 + 8*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^7)/(168*k^5) - (k^6*(-35 + 8*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^7)/(840*k^5) + (8*k*(k^2 - 8*k0^2)*(k^2 - k0^2)^2*Sqrt[1 - k0^2/k^2] + I*(35*k^6*k0 - 140*k^4*k0^3 + 168*k^2*k0^5 - 64*k0^7))/(840*k^5))/k0^4
|
||||
(-(Power(k,6)*(-35 + 8*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*(c - Complex(0,1)*k0) + 20*Power(k,4)*(-7 + 4*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,3) + 8*Power(k,2)*(-21 + 17*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,5) + 64*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,7))/(168.*Power(k,5)) + (Power(k,6)*(-35 + 8*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*(2*c - Complex(0,1)*k0) + 20*Power(k,4)*(-7 + 4*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,3) + 8*Power(k,2)*(-21 + 17*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,5) + 64*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,7))/(84.*Power(k,5)) - (Power(k,6)*(-35 + 8*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*(3*c - Complex(0,1)*k0) + 20*Power(k,4)*(-7 + 4*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,3) + 8*Power(k,2)*(-21 + 17*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,5) + 64*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,7))/(84.*Power(k,5)) + (Power(k,6)*(-35 + 8*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*(4*c - Complex(0,1)*k0) + 20*Power(k,4)*(-7 + 4*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,3) + 8*Power(k,2)*(-21 + 17*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,5) + 64*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,7))/(168.*Power(k,5)) - (Power(k,6)*(-35 + 8*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*(5*c - Complex(0,1)*k0) + 20*Power(k,4)*(-7 + 4*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,3) + 8*Power(k,2)*(-21 + 17*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,5) + 64*(-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,7))/(840.*Power(k,5)) + (8*k*(Power(k,2) - 8*Power(k0,2))*Power(Power(k,2) - Power(k0,2),2)*Sqrt(1 - Power(k0,2)/Power(k,2)) + Complex(0,1)*(35*Power(k,6)*k0 - 140*Power(k,4)*Power(k0,3) + 168*Power(k,2)*Power(k0,5) - 64*Power(k0,7)))/(840.*Power(k,5)))/Power(k0,4)
|
||||
SeriesData[k, Infinity, {(24*c^5)/k0^4, (-525*c^6)/(2*k0^4) + ((105*I)*c^5)/k0^3, (1280*c^7)/k0^4 - ((960*I)*c^6)/k0^3 - (192*c^5)/k0^2, (-315*(75*c^8 - (80*I)*c^7*k0 - 30*c^6*k0^2 + (4*I)*c^5*k0^3))/(8*k0^4), 0, (231*(2025*c^10 - (3310*I)*c^9*k0 - 2250*c^8*k0^2 + (800*I)*c^7*k0^3 + 150*c^6*k0^4 - (12*I)*c^5*k0^5))/(32*k0^4), 0, (-429*(20900*c^12 - (44860*I)*c^11*k0 - 42525*c^10*k0^2 + (23170*I)*c^9*k0^3 + 7875*c^8*k0^4 - (1680*I)*c^7*k0^5 - 210*c^6*k0^6 + (12*I)*c^5*k0^7))/(64*k0^4)}, 3, 11, 1]
|
||||
-(5*(k^6*(-35 + 8*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^7) - 10*(k^6*(-35 + 8*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^7) + 10*(k^6*(-35 + 8*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^7) - 5*(k^6*(-35 + 8*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^7) + k^6*(-35 + 8*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^7 - 8*k*(k^2 - 8*k0^2)*(k^2 - k0^2)^2*Sqrt[1 - k0^2/k^2] - I*(35*k^6*k0 - 140*k^4*k0^3 + 168*k^2*k0^5 - 64*k0^7))/(840*k^5*k0^4)
|
|
@ -0,0 +1,11 @@
|
|||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[0, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 0 && q == 5 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0]
|
||||
Integrate((Power(E,I*k0*x)*Power(1 - Power(E,-(c*x)),5)*BesselJ(0,k*x))/(Power(k0,5)*Power(x,4)),List(x,0,DirectedInfinity(1)),Rule(Assumptions,n == 0 && q == 5 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0))
|
||||
|
||||
I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x 2 Pi -5 c x + I k0 x 2 Pi -4 c x + I k0 x 2 Pi -3 c x + I k0 x 2 Pi -2 c x + I k0 x 2 Pi -(c x) + I k0 x 2 Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi
|
||||
13043905875 E Cos[-- - k x] 13043905875 E Cos[-- - k x] 65219529375 E Cos[-- - k x] 65219529375 E Cos[-- - k x] 65219529375 E Cos[-- - k x] 65219529375 E Cos[-- - k x] 2401245 E Cos[-- - k x] 2401245 E Cos[-- - k x] 12006225 E Cos[-- - k x] 12006225 E Cos[-- - k x] 12006225 E Cos[-- - k x] 12006225 E Cos[-- - k x] 3675 E Cos[-- - k x] 3675 E Cos[-- - k x] 18375 E Cos[-- - k x] 18375 E Cos[-- - k x] 18375 E Cos[-- - k x] 18375 E Cos[-- - k x] 9 E Cos[-- - k x] 9 E Cos[-- - k x] 45 E Cos[-- - k x] 45 E Cos[-- - k x] 45 E Cos[-- - k x] 45 E Cos[-- - k x] E Sqrt[--] Cos[-- - k x] E Sqrt[--] Cos[-- - k x] 5 E Sqrt[--] Cos[-- - k x] 10 E Sqrt[--] Cos[-- - k x] 10 E Sqrt[--] Cos[-- - k x] 5 E Sqrt[--] Cos[-- - k x] 418854310875 E Sin[-- - k x] 418854310875 E Sin[-- - k x] 2094271554375 E Sin[-- - k x] 2094271554375 E Sin[-- - k x] 2094271554375 E Sin[-- - k x] 2094271554375 E Sin[-- - k x] 57972915 E Sin[-- - k x] 57972915 E Sin[-- - k x] 289864575 E Sin[-- - k x] 289864575 E Sin[-- - k x] 289864575 E Sin[-- - k x] 289864575 E Sin[-- - k x] 59535 E Sin[-- - k x] 59535 E Sin[-- - k x] 297675 E Sin[-- - k x] 297675 E Sin[-- - k x] 297675 E Sin[-- - k x] 297675 E Sin[-- - k x] 75 E Sin[-- - k x] 75 E Sin[-- - k x] 375 E Sin[-- - k x] 375 E Sin[-- - k x] 375 E Sin[-- - k x] 375 E Sin[-- - k x] E Sin[-- - k x] E Sin[-- - k x] 5 E Sin[-- - k x] 5 E Sin[-- - k x] 5 E Sin[-- - k x] 5 E Sin[-- - k x]
|
||||
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
|
||||
Integrate::idiv: Integral of ------------------------------------- - ------------------------------------------ + ------------------------------------------ - ------------------------------------------ + ------------------------------------------ - ------------------------------------------ - ---------------------------------- + -------------------------------------- - --------------------------------------- + --------------------------------------- - --------------------------------------- + --------------------------------------- + ------------------------------- - ----------------------------------- + ------------------------------------ - ------------------------------------ + ------------------------------------ - ------------------------------------ - ---------------------------- + -------------------------------- - --------------------------------- + --------------------------------- - --------------------------------- + --------------------------------- + ------------------------------ - --------------------------------------- + ----------------------------------------- - ------------------------------------------ + ------------------------------------------ - ----------------------------------------- - ------------------------------------- + ------------------------------------------- - -------------------------------------------- + -------------------------------------------- - -------------------------------------------- + -------------------------------------------- + ----------------------------------- - --------------------------------------- + ---------------------------------------- - ---------------------------------------- + ---------------------------------------- - ---------------------------------------- - --------------------------------- + ------------------------------------ - ------------------------------------- + ------------------------------------- - ------------------------------------- + ------------------------------------- + ----------------------------- - --------------------------------- + ---------------------------------- - ---------------------------------- + ---------------------------------- - ---------------------------------- - --------------------------- + ------------------------------ - -------------------------------- + -------------------------------- - -------------------------------- + -------------------------------- does not converge on {0, Infinity}.
|
||||
17/2 5 25/2 17/2 5 25/2 17/2 5 25/2 17/2 5 25/2 17/2 5 25/2 17/2 5 25/2 13/2 5 21/2 13/2 5 21/2 13/2 5 21/2 13/2 5 21/2 13/2 5 21/2 13/2 5 21/2 9/2 5 17/2 9/2 5 17/2 9/2 5 17/2 9/2 5 17/2 9/2 5 17/2 9/2 5 17/2 5/2 5 13/2 5/2 5 13/2 5/2 5 13/2 5/2 5 13/2 5/2 5 13/2 5/2 5 13/2 5 9/2 5 9/2 5 9/2 5 9/2 5 9/2 5 9/2 19/2 5 27/2 19/2 5 27/2 19/2 5 27/2 19/2 5 27/2 19/2 5 27/2 19/2 5 27/2 15/2 5 23/2 15/2 5 23/2 15/2 5 23/2 15/2 5 23/2 15/2 5 23/2 15/2 5 23/2 11/2 5 19/2 11/2 5 19/2 11/2 5 19/2 11/2 5 19/2 11/2 5 19/2 11/2 5 19/2 7/2 5 15/2 7/2 5 15/2 7/2 5 15/2 7/2 5 15/2 7/2 5 15/2 7/2 5 15/2 3/2 5 11/2 3/2 5 11/2 3/2 5 11/2 3/2 5 11/2 3/2 5 11/2 3/2 5 11/2
|
||||
1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x
|
||||
Series[Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[0, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 0 && q == 5 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0], {k, Infinity, 10}]
|
||||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[0, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 0 && q == 5 && κ == 5]
|
|
@ -0,0 +1,13 @@
|
|||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[1, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 1 && q == 5 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0]
|
||||
Integrate((Power(E,I*k0*x)*Power(1 - Power(E,-(c*x)),5)*BesselJ(1,k*x))/(Power(k0,5)*Power(x,4)),List(x,0,DirectedInfinity(1)),Rule(Assumptions,n == 1 && q == 5 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0))
|
||||
|
||||
I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x 2 Pi -5 c x + I k0 x 2 Pi -4 c x + I k0 x 2 Pi -3 c x + I k0 x 2 Pi -2 c x + I k0 x 2 Pi -(c x) + I k0 x 2 Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi
|
||||
14783093325 E Cos[-- + k x] 14783093325 E Cos[-- + k x] 73915466625 E Cos[-- + k x] 73915466625 E Cos[-- + k x] 73915466625 E Cos[-- + k x] 73915466625 E Cos[-- + k x] 2837835 E Cos[-- + k x] 2837835 E Cos[-- + k x] 14189175 E Cos[-- + k x] 14189175 E Cos[-- + k x] 14189175 E Cos[-- + k x] 14189175 E Cos[-- + k x] 4725 E Cos[-- + k x] 4725 E Cos[-- + k x] 23625 E Cos[-- + k x] 23625 E Cos[-- + k x] 23625 E Cos[-- + k x] 23625 E Cos[-- + k x] 15 E Cos[-- + k x] 15 E Cos[-- + k x] 75 E Cos[-- + k x] 75 E Cos[-- + k x] 75 E Cos[-- + k x] 75 E Cos[-- + k x] E Sqrt[--] Cos[-- + k x] E Sqrt[--] Cos[-- + k x] 5 E Sqrt[--] Cos[-- + k x] 10 E Sqrt[--] Cos[-- + k x] 10 E Sqrt[--] Cos[-- + k x] 5 E Sqrt[--] Cos[-- + k x] 468131288625 E Sin[-- + k x] 468131288625 E Sin[-- + k x] 2340656443125 E Sin[-- + k x] 2340656443125 E Sin[-- + k x] 2340656443125 E Sin[-- + k x] 2340656443125 E Sin[-- + k x] 66891825 E Sin[-- + k x] 66891825 E Sin[-- + k x] 334459125 E Sin[-- + k x] 334459125 E Sin[-- + k x] 334459125 E Sin[-- + k x] 334459125 E Sin[-- + k x] 72765 E Sin[-- + k x] 72765 E Sin[-- + k x] 363825 E Sin[-- + k x] 363825 E Sin[-- + k x] 363825 E Sin[-- + k x] 363825 E Sin[-- + k x] 105 E Sin[-- + k x] 105 E Sin[-- + k x] 525 E Sin[-- + k x] 525 E Sin[-- + k x] 525 E Sin[-- + k x] 525 E Sin[-- + k x] 3 E Sin[-- + k x] 3 E Sin[-- + k x] 15 E Sin[-- + k x] 15 E Sin[-- + k x] 15 E Sin[-- + k x] 15 E Sin[-- + k x]
|
||||
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
|
||||
Integrate::idiv: Integral of ------------------------------------- - ------------------------------------------ + ------------------------------------------ - ------------------------------------------ + ------------------------------------------ - ------------------------------------------ - ---------------------------------- + -------------------------------------- - --------------------------------------- + --------------------------------------- - --------------------------------------- + --------------------------------------- + ------------------------------- - ----------------------------------- + ------------------------------------ - ------------------------------------ + ------------------------------------ - ------------------------------------ - ---------------------------- + --------------------------------- - --------------------------------- + --------------------------------- - --------------------------------- + --------------------------------- - ------------------------------ + --------------------------------------- - ----------------------------------------- + ------------------------------------------ - ------------------------------------------ + ----------------------------------------- + ------------------------------------- - ------------------------------------------- + -------------------------------------------- - -------------------------------------------- + -------------------------------------------- - -------------------------------------------- - ----------------------------------- + --------------------------------------- - ---------------------------------------- + ---------------------------------------- - ---------------------------------------- + ---------------------------------------- + --------------------------------- - ------------------------------------ + ------------------------------------- - ------------------------------------- + ------------------------------------- - ------------------------------------- - ----------------------------- + ---------------------------------- - ---------------------------------- + ---------------------------------- - ---------------------------------- + ---------------------------------- + --------------------------- - -------------------------------- + --------------------------------- - --------------------------------- + --------------------------------- - --------------------------------- does not converge on {0, Infinity}.
|
||||
17/2 5 25/2 17/2 5 25/2 17/2 5 25/2 17/2 5 25/2 17/2 5 25/2 17/2 5 25/2 13/2 5 21/2 13/2 5 21/2 13/2 5 21/2 13/2 5 21/2 13/2 5 21/2 13/2 5 21/2 9/2 5 17/2 9/2 5 17/2 9/2 5 17/2 9/2 5 17/2 9/2 5 17/2 9/2 5 17/2 5/2 5 13/2 5/2 5 13/2 5/2 5 13/2 5/2 5 13/2 5/2 5 13/2 5/2 5 13/2 5 9/2 5 9/2 5 9/2 5 9/2 5 9/2 5 9/2 19/2 5 27/2 19/2 5 27/2 19/2 5 27/2 19/2 5 27/2 19/2 5 27/2 19/2 5 27/2 15/2 5 23/2 15/2 5 23/2 15/2 5 23/2 15/2 5 23/2 15/2 5 23/2 15/2 5 23/2 11/2 5 19/2 11/2 5 19/2 11/2 5 19/2 11/2 5 19/2 11/2 5 19/2 11/2 5 19/2 7/2 5 15/2 7/2 5 15/2 7/2 5 15/2 7/2 5 15/2 7/2 5 15/2 7/2 5 15/2 3/2 5 11/2 3/2 5 11/2 3/2 5 11/2 3/2 5 11/2 3/2 5 11/2 3/2 5 11/2
|
||||
1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x
|
||||
Series[Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[1, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 1 && q == 5 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0], {k, Infinity, 10}]
|
||||
|
||||
Simplify::time: Time spent on a transformation exceeded 300. seconds, and the transformation was aborted. Increasing the value of TimeConstraint option may improve the result of simplification.
|
||||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[1, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 1 && q == 5 && κ == 5]
|
|
@ -0,0 +1,11 @@
|
|||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[2, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 2 && q == 5 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0]
|
||||
Integrate((Power(E,I*k0*x)*Power(1 - Power(E,-(c*x)),5)*BesselJ(2,k*x))/(Power(k0,5)*Power(x,4)),List(x,0,DirectedInfinity(1)),Rule(Assumptions,n == 2 && q == 5 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0))
|
||||
|
||||
I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x 2 Pi -5 c x + I k0 x 2 Pi -4 c x + I k0 x 2 Pi -3 c x + I k0 x 2 Pi -2 c x + I k0 x 2 Pi -(c x) + I k0 x 2 Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi
|
||||
-21606059475 E Cos[-- - k x] 21606059475 E Cos[-- - k x] 108030297375 E Cos[-- - k x] 108030297375 E Cos[-- - k x] 108030297375 E Cos[-- - k x] 108030297375 E Cos[-- - k x] 4729725 E Cos[-- - k x] 4729725 E Cos[-- - k x] 23648625 E Cos[-- - k x] 23648625 E Cos[-- - k x] 23648625 E Cos[-- - k x] 23648625 E Cos[-- - k x] 10395 E Cos[-- - k x] 10395 E Cos[-- - k x] 51975 E Cos[-- - k x] 51975 E Cos[-- - k x] 51975 E Cos[-- - k x] 51975 E Cos[-- - k x] 105 E Cos[-- - k x] 105 E Cos[-- - k x] 525 E Cos[-- - k x] 525 E Cos[-- - k x] 525 E Cos[-- - k x] 525 E Cos[-- - k x] E Sqrt[--] Cos[-- - k x] E Sqrt[--] Cos[-- - k x] 5 E Sqrt[--] Cos[-- - k x] 10 E Sqrt[--] Cos[-- - k x] 10 E Sqrt[--] Cos[-- - k x] 5 E Sqrt[--] Cos[-- - k x] 655383804075 E Sin[-- - k x] 655383804075 E Sin[-- - k x] 3276919020375 E Sin[-- - k x] 3276919020375 E Sin[-- - k x] 3276919020375 E Sin[-- - k x] 3276919020375 E Sin[-- - k x] 103378275 E Sin[-- - k x] 103378275 E Sin[-- - k x] 516891375 E Sin[-- - k x] 516891375 E Sin[-- - k x] 516891375 E Sin[-- - k x] 516891375 E Sin[-- - k x] 135135 E Sin[-- - k x] 135135 E Sin[-- - k x] 675675 E Sin[-- - k x] 675675 E Sin[-- - k x] 675675 E Sin[-- - k x] 675675 E Sin[-- - k x] 315 E Sin[-- - k x] 315 E Sin[-- - k x] 1575 E Sin[-- - k x] 1575 E Sin[-- - k x] 1575 E Sin[-- - k x] 1575 E Sin[-- - k x] 15 E Sin[-- - k x] 15 E Sin[-- - k x] 75 E Sin[-- - k x] 75 E Sin[-- - k x] 75 E Sin[-- - k x] 75 E Sin[-- - k x]
|
||||
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
|
||||
Integrate::idiv: Integral of ------------------------------------- + ------------------------------------------ - ------------------------------------------- + ------------------------------------------- - ------------------------------------------- + ------------------------------------------- + ---------------------------------- - -------------------------------------- + --------------------------------------- - --------------------------------------- + --------------------------------------- - --------------------------------------- - ------------------------------- + ------------------------------------ - ------------------------------------ + ------------------------------------ - ------------------------------------ + ------------------------------------ + ---------------------------- - ---------------------------------- + ---------------------------------- - ---------------------------------- + ---------------------------------- - ---------------------------------- - ------------------------------ + --------------------------------------- - ----------------------------------------- + ------------------------------------------ - ------------------------------------------ + ----------------------------------------- + ------------------------------------- - ------------------------------------------- + -------------------------------------------- - -------------------------------------------- + -------------------------------------------- - -------------------------------------------- - ----------------------------------- + ---------------------------------------- - ---------------------------------------- + ---------------------------------------- - ---------------------------------------- + ---------------------------------------- + --------------------------------- - ------------------------------------- + ------------------------------------- - ------------------------------------- + ------------------------------------- - ------------------------------------- - ----------------------------- + ---------------------------------- - ----------------------------------- + ----------------------------------- - ----------------------------------- + ----------------------------------- - --------------------------- + --------------------------------- - --------------------------------- + --------------------------------- - --------------------------------- + --------------------------------- does not converge on {0, Infinity}.
|
||||
17/2 5 25/2 17/2 5 25/2 17/2 5 25/2 17/2 5 25/2 17/2 5 25/2 17/2 5 25/2 13/2 5 21/2 13/2 5 21/2 13/2 5 21/2 13/2 5 21/2 13/2 5 21/2 13/2 5 21/2 9/2 5 17/2 9/2 5 17/2 9/2 5 17/2 9/2 5 17/2 9/2 5 17/2 9/2 5 17/2 5/2 5 13/2 5/2 5 13/2 5/2 5 13/2 5/2 5 13/2 5/2 5 13/2 5/2 5 13/2 5 9/2 5 9/2 5 9/2 5 9/2 5 9/2 5 9/2 19/2 5 27/2 19/2 5 27/2 19/2 5 27/2 19/2 5 27/2 19/2 5 27/2 19/2 5 27/2 15/2 5 23/2 15/2 5 23/2 15/2 5 23/2 15/2 5 23/2 15/2 5 23/2 15/2 5 23/2 11/2 5 19/2 11/2 5 19/2 11/2 5 19/2 11/2 5 19/2 11/2 5 19/2 11/2 5 19/2 7/2 5 15/2 7/2 5 15/2 7/2 5 15/2 7/2 5 15/2 7/2 5 15/2 7/2 5 15/2 3/2 5 11/2 3/2 5 11/2 3/2 5 11/2 3/2 5 11/2 3/2 5 11/2 3/2 5 11/2
|
||||
1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x
|
||||
Series[Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[2, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 2 && q == 5 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0], {k, Infinity, 10}]
|
||||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[2, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 2 && q == 5 && κ == 5]
|
|
@ -0,0 +1,13 @@
|
|||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[3, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 3 && q == 5 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0]
|
||||
Integrate((Power(E,I*k0*x)*Power(1 - Power(E,-(c*x)),5)*BesselJ(3,k*x))/(Power(k0,5)*Power(x,4)),List(x,0,DirectedInfinity(1)),Rule(Assumptions,n == 3 && q == 5 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0))
|
||||
|
||||
I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x 2 Pi -5 c x + I k0 x 2 Pi -4 c x + I k0 x 2 Pi -3 c x + I k0 x 2 Pi -2 c x + I k0 x 2 Pi -(c x) + I k0 x 2 Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi
|
||||
-41247931725 E Cos[-- + k x] 41247931725 E Cos[-- + k x] 206239658625 E Cos[-- + k x] 206239658625 E Cos[-- + k x] 206239658625 E Cos[-- + k x] 206239658625 E Cos[-- + k x] 11486475 E Cos[-- + k x] 11486475 E Cos[-- + k x] 57432375 E Cos[-- + k x] 57432375 E Cos[-- + k x] 57432375 E Cos[-- + k x] 57432375 E Cos[-- + k x] 45045 E Cos[-- + k x] 45045 E Cos[-- + k x] 225225 E Cos[-- + k x] 225225 E Cos[-- + k x] 225225 E Cos[-- + k x] 225225 E Cos[-- + k x] 945 E Cos[-- + k x] 945 E Cos[-- + k x] 4725 E Cos[-- + k x] 4725 E Cos[-- + k x] 4725 E Cos[-- + k x] 4725 E Cos[-- + k x] E Sqrt[--] Cos[-- + k x] E Sqrt[--] Cos[-- + k x] 5 E Sqrt[--] Cos[-- + k x] 10 E Sqrt[--] Cos[-- + k x] 10 E Sqrt[--] Cos[-- + k x] 5 E Sqrt[--] Cos[-- + k x] 1159525191825 E Sin[-- + k x] 1159525191825 E Sin[-- + k x] 5797625959125 E Sin[-- + k x] 5797625959125 E Sin[-- + k x] 5797625959125 E Sin[-- + k x] 5797625959125 E Sin[-- + k x] 218243025 E Sin[-- + k x] 218243025 E Sin[-- + k x] 1091215125 E Sin[-- + k x] 1091215125 E Sin[-- + k x] 1091215125 E Sin[-- + k x] 1091215125 E Sin[-- + k x] 405405 E Sin[-- + k x] 405405 E Sin[-- + k x] 2027025 E Sin[-- + k x] 2027025 E Sin[-- + k x] 2027025 E Sin[-- + k x] 2027025 E Sin[-- + k x] 3465 E Sin[-- + k x] 3465 E Sin[-- + k x] 17325 E Sin[-- + k x] 17325 E Sin[-- + k x] 17325 E Sin[-- + k x] 17325 E Sin[-- + k x] 35 E Sin[-- + k x] 35 E Sin[-- + k x] 175 E Sin[-- + k x] 175 E Sin[-- + k x] 175 E Sin[-- + k x] 175 E Sin[-- + k x]
|
||||
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
|
||||
Integrate::idiv: Integral of ------------------------------------- + ------------------------------------------ - ------------------------------------------- + ------------------------------------------- - ------------------------------------------- + ------------------------------------------- + ---------------------------------- - --------------------------------------- + --------------------------------------- - --------------------------------------- + --------------------------------------- - --------------------------------------- - ------------------------------- + ------------------------------------ - ------------------------------------- + ------------------------------------- - ------------------------------------- + ------------------------------------- - ---------------------------- + ---------------------------------- - ----------------------------------- + ----------------------------------- - ----------------------------------- + ----------------------------------- + ------------------------------ - --------------------------------------- + ----------------------------------------- - ------------------------------------------ + ------------------------------------------ - ----------------------------------------- - ------------------------------------- + -------------------------------------------- - -------------------------------------------- + -------------------------------------------- - -------------------------------------------- + -------------------------------------------- + ----------------------------------- - ---------------------------------------- + ----------------------------------------- - ----------------------------------------- + ----------------------------------------- - ----------------------------------------- - --------------------------------- + ------------------------------------- - -------------------------------------- + -------------------------------------- - -------------------------------------- + -------------------------------------- + ----------------------------- - ----------------------------------- + ------------------------------------ - ------------------------------------ + ------------------------------------ - ------------------------------------ - --------------------------- + --------------------------------- - ---------------------------------- + ---------------------------------- - ---------------------------------- + ---------------------------------- does not converge on {0, Infinity}.
|
||||
17/2 5 25/2 17/2 5 25/2 17/2 5 25/2 17/2 5 25/2 17/2 5 25/2 17/2 5 25/2 13/2 5 21/2 13/2 5 21/2 13/2 5 21/2 13/2 5 21/2 13/2 5 21/2 13/2 5 21/2 9/2 5 17/2 9/2 5 17/2 9/2 5 17/2 9/2 5 17/2 9/2 5 17/2 9/2 5 17/2 5/2 5 13/2 5/2 5 13/2 5/2 5 13/2 5/2 5 13/2 5/2 5 13/2 5/2 5 13/2 5 9/2 5 9/2 5 9/2 5 9/2 5 9/2 5 9/2 19/2 5 27/2 19/2 5 27/2 19/2 5 27/2 19/2 5 27/2 19/2 5 27/2 19/2 5 27/2 15/2 5 23/2 15/2 5 23/2 15/2 5 23/2 15/2 5 23/2 15/2 5 23/2 15/2 5 23/2 11/2 5 19/2 11/2 5 19/2 11/2 5 19/2 11/2 5 19/2 11/2 5 19/2 11/2 5 19/2 7/2 5 15/2 7/2 5 15/2 7/2 5 15/2 7/2 5 15/2 7/2 5 15/2 7/2 5 15/2 3/2 5 11/2 3/2 5 11/2 3/2 5 11/2 3/2 5 11/2 3/2 5 11/2 3/2 5 11/2
|
||||
1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x
|
||||
Series[Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[3, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 3 && q == 5 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0], {k, Infinity, 10}]
|
||||
|
||||
Simplify::time: Time spent on a transformation exceeded 300. seconds, and the transformation was aborted. Increasing the value of TimeConstraint option may improve the result of simplification.
|
||||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[3, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 3 && q == 5 && κ == 5]
|
|
@ -0,0 +1,4 @@
|
|||
(-(k^6*(-35 + 16*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 2*k^4*(-35 + 24*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 8*k^2*(-7 + 6*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5 + 16*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^7)/(336*k^4) + (k^6*(-35 + 16*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 2*k^4*(-35 + 24*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 8*k^2*(-7 + 6*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5 + 16*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^7)/(168*k^4) - (k^6*(-35 + 16*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 2*k^4*(-35 + 24*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 8*k^2*(-7 + 6*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5 + 16*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^7)/(168*k^4) + (k^6*(-35 + 16*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 2*k^4*(-35 + 24*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 8*k^2*(-7 + 6*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5 + 16*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^7)/(336*k^4) - (k^6*(-35 + 16*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 2*k^4*(-35 + 24*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 8*k^2*(-7 + 6*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5 + 16*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^7)/(1680*k^4) + (16*(k^2 - k0^2)^(7/2) + I*(35*k^6*k0 - 70*k^4*k0^3 + 56*k^2*k0^5 - 16*k0^7))/(1680*k^4))/k0^5
|
||||
(-(Power(k,6)*(-35 + 16*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*(c - Complex(0,1)*k0) + 2*Power(k,4)*(-35 + 24*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,3) + 8*Power(k,2)*(-7 + 6*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,5) + 16*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,7))/(336.*Power(k,4)) + (Power(k,6)*(-35 + 16*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*(2*c - Complex(0,1)*k0) + 2*Power(k,4)*(-35 + 24*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,3) + 8*Power(k,2)*(-7 + 6*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,5) + 16*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,7))/(168.*Power(k,4)) - (Power(k,6)*(-35 + 16*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*(3*c - Complex(0,1)*k0) + 2*Power(k,4)*(-35 + 24*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,3) + 8*Power(k,2)*(-7 + 6*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,5) + 16*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,7))/(168.*Power(k,4)) + (Power(k,6)*(-35 + 16*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*(4*c - Complex(0,1)*k0) + 2*Power(k,4)*(-35 + 24*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,3) + 8*Power(k,2)*(-7 + 6*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,5) + 16*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,7))/(336.*Power(k,4)) - (Power(k,6)*(-35 + 16*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*(5*c - Complex(0,1)*k0) + 2*Power(k,4)*(-35 + 24*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,3) + 8*Power(k,2)*(-7 + 6*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,5) + 16*(-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,7))/(1680.*Power(k,4)) + (16*Power(Power(k,2) - Power(k0,2),3.5) + Complex(0,1)*(35*Power(k,6)*k0 - 70*Power(k,4)*Power(k0,3) + 56*Power(k,2)*Power(k0,5) - 16*Power(k0,7)))/(1680.*Power(k,4)))/Power(k0,5)
|
||||
SeriesData[k, Infinity, {(4*c^5)/k0^5, (-75*c^6)/(2*k0^5) + ((15*I)*c^5)/k0^4, (160*c^7)/k0^5 - ((120*I)*c^6)/k0^4 - (24*c^5)/k0^3, (-35*(75*c^8 - (80*I)*c^7*k0 - 30*c^6*k0^2 + (4*I)*c^5*k0^3))/(8*k0^5), 0, (21*(2025*c^10 - (3310*I)*c^9*k0 - 2250*c^8*k0^2 + (800*I)*c^7*k0^3 + 150*c^6*k0^4 - (12*I)*c^5*k0^5))/(32*k0^5), 0, (-33*(20900*c^12 - (44860*I)*c^11*k0 - 42525*c^10*k0^2 + (23170*I)*c^9*k0^3 + 7875*c^8*k0^4 - (1680*I)*c^7*k0^5 - 210*c^6*k0^6 + (12*I)*c^5*k0^7))/(64*k0^5)}, 2, 11, 1]
|
||||
-(5*(k^6*(-35 + 16*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 2*k^4*(-35 + 24*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 8*k^2*(-7 + 6*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5 + 16*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^7) - 10*(k^6*(-35 + 16*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 2*k^4*(-35 + 24*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 8*k^2*(-7 + 6*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5 + 16*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^7) + 10*(k^6*(-35 + 16*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 2*k^4*(-35 + 24*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 8*k^2*(-7 + 6*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5 + 16*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^7) - 5*(k^6*(-35 + 16*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 2*k^4*(-35 + 24*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 8*k^2*(-7 + 6*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5 + 16*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^7) + k^6*(-35 + 16*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 2*k^4*(-35 + 24*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 8*k^2*(-7 + 6*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5 + 16*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^7 - 16*(k^2 - k0^2)^(7/2) - I*(35*k^6*k0 - 70*k^4*k0^3 + 56*k^2*k0^5 - 16*k0^7))/(1680*k^4*k0^5)
|
|
@ -0,0 +1,4 @@
|
|||
(-(35*k^8 + 8*k^6*(35 - 16*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 16*k^4*(35 - 24*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 + 64*k^2*(7 - 6*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6 - 128*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^8)/(2688*k^5) + (35*k^8 + 8*k^6*(35 - 16*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 16*k^4*(35 - 24*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 + 64*k^2*(7 - 6*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6 - 128*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^8)/(1344*k^5) - (35*k^8 + 8*k^6*(35 - 16*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 16*k^4*(35 - 24*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 + 64*k^2*(7 - 6*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6 - 128*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^8)/(1344*k^5) + (35*k^8 + 8*k^6*(35 - 16*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 16*k^4*(35 - 24*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 + 64*k^2*(7 - 6*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6 - 128*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^8)/(2688*k^5) - (35*k^8 + 8*k^6*(35 - 16*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 16*k^4*(35 - 24*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 + 64*k^2*(7 - 6*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^6 - 128*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^8)/(13440*k^5) + (35*k^8 - 280*k^6*k0^2 + 560*k^4*k0^4 - 448*k^2*k0^6 + 128*k0^8 + (128*I)*k0*(k^2 - k0^2)^(7/2))/(13440*k^5))/k0^5
|
||||
(-(35*Power(k,8) + 8*Power(k,6)*(35 - 16*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,2) + 16*Power(k,4)*(35 - 24*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,4) + 64*Power(k,2)*(7 - 6*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,6) - 128*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,8))/(2688.*Power(k,5)) + (35*Power(k,8) + 8*Power(k,6)*(35 - 16*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,2) + 16*Power(k,4)*(35 - 24*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,4) + 64*Power(k,2)*(7 - 6*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,6) - 128*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,8))/(1344.*Power(k,5)) - (35*Power(k,8) + 8*Power(k,6)*(35 - 16*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,2) + 16*Power(k,4)*(35 - 24*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,4) + 64*Power(k,2)*(7 - 6*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,6) - 128*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,8))/(1344.*Power(k,5)) + (35*Power(k,8) + 8*Power(k,6)*(35 - 16*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,2) + 16*Power(k,4)*(35 - 24*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,4) + 64*Power(k,2)*(7 - 6*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,6) - 128*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,8))/(2688.*Power(k,5)) - (35*Power(k,8) + 8*Power(k,6)*(35 - 16*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,2) + 16*Power(k,4)*(35 - 24*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,4) + 64*Power(k,2)*(7 - 6*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,6) - 128*(-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,8))/(13440.*Power(k,5)) + (35*Power(k,8) - 280*Power(k,6)*Power(k0,2) + 560*Power(k,4)*Power(k0,4) - 448*Power(k,2)*Power(k0,6) + 128*Power(k0,8) + Complex(0,128)*k0*Power(Power(k,2) - Power(k0,2),3.5))/(13440.*Power(k,5)))/Power(k0,5)
|
||||
SeriesData[k, Infinity, {(5*c^5)/k0^5, (-60*c^6)/k0^5 + ((24*I)*c^5)/k0^4, (35*(20*c^7 - (15*I)*c^6*k0 - 3*c^5*k0^2))/(2*k0^5), (-1200*c^8)/k0^5 + ((1280*I)*c^7)/k0^4 + (480*c^6)/k0^3 - ((64*I)*c^5)/k0^2, (105*(331*c^9 - (450*I)*c^8*k0 - 240*c^7*k0^2 + (60*I)*c^6*k0^3 + 6*c^5*k0^4))/(16*k0^5), 0, (-11*(22430*c^11 - (42525*I)*c^10*k0 - 34755*c^9*k0^2 + (15750*I)*c^8*k0^3 + 4200*c^7*k0^4 - (630*I)*c^6*k0^5 - 42*c^5*k0^6))/(32*k0^5), 0, (143*(52507*c^13 - (125400*I)*c^12*k0 - 134580*c^11*k0^2 + (85050*I)*c^10*k0^3 + 34755*c^9*k0^4 - (9450*I)*c^8*k0^5 - 1680*c^7*k0^6 + (180*I)*c^6*k0^7 + 9*c^5*k0^8))/(128*k0^5)}, 2, 11, 1]
|
||||
(5*k^6*(-35 + 16*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 10*k^4*(-35 + 24*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 + 40*k^2*(-7 + 6*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6 + 80*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^8 + 10*k^6*(35 - 16*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 20*k^4*(35 - 24*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 + 80*k^2*(7 - 6*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6 - 160*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^8 + 10*k^6*(-35 + 16*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 20*k^4*(-35 + 24*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 + 80*k^2*(-7 + 6*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6 + 160*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^8 + 5*k^6*(35 - 16*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 10*k^4*(35 - 24*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 + 40*k^2*(7 - 6*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6 - 80*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^8 + k^6*(-35 + 16*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 2*k^4*(-35 + 24*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 + 8*k^2*(-7 + 6*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^6 + 16*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^8 - 35*k^6*k0^2 + 70*k^4*k0^4 - 56*k^2*k0^6 + 16*k0^8 + (16*I)*k0*(k^2 - k0^2)^(7/2))/(1680*k^5*k0^5)
|
|
@ -0,0 +1,4 @@
|
|||
((-5*(k^2*(-3 + Sqrt[1 + k^2/(c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2))/(k^3*Sqrt[1 + k^2/(c - I*k0)^2]) + (10*(k^2*(-3 + Sqrt[1 + k^2/(2*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2))/(k^3*Sqrt[1 + k^2/(2*c - I*k0)^2]) - (10*(k^2*(-3 + Sqrt[1 + k^2/(3*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2))/(k^3*Sqrt[1 + k^2/(3*c - I*k0)^2]) + (5*(k^2*(-3 + Sqrt[1 + k^2/(4*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2))/(k^3*Sqrt[1 + k^2/(4*c - I*k0)^2]) - (k^2*(-3 + Sqrt[1 + k^2/(5*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2)/(k^3*Sqrt[1 + k^2/(5*c - I*k0)^2]) + (k^2*(1 - (3*k0)/Sqrt[-k^2 + k0^2]) + 4*k0^2*(-1 + k0/Sqrt[-k^2 + k0^2]))/k^3)/k0
|
||||
((-5*(Power(k,2)*(-3 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2))) + 4*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,2)))/(Power(k,3)*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2))) + (10*(Power(k,2)*(-3 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2))) + 4*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,2)))/(Power(k,3)*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2))) - (10*(Power(k,2)*(-3 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2))) + 4*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,2)))/(Power(k,3)*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2))) + (5*(Power(k,2)*(-3 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2))) + 4*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,2)))/(Power(k,3)*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2))) - (Power(k,2)*(-3 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2))) + 4*(-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,2))/(Power(k,3)*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2))) + (Power(k,2)*(1 - (3*k0)/Sqrt(-Power(k,2) + Power(k0,2))) + 4*Power(k0,2)*(-1 + k0/Sqrt(-Power(k,2) + Power(k0,2))))/Power(k,3))/k0
|
||||
SeriesData[k, Infinity, {-(1/(k*k0)), (k - (3*I)*k0)/(k*k0), (I*(3*k - (4*I)*k0))/k, (-8*k*k0 + (5*I)*k0^2)/(2*k), ((3*(5*c - I*k0)^4)/(8*k) - (5*I)/2*k0^3 - (3*(5*c - I*k0)^3*((5*c)/k - (I*k0)/k))/8 - 5*((-3*(c - I*k0)^4)/(8*k) + (3*(c - I*k0)^3*(c/k - (I*k0)/k))/8) + 10*((-3*(2*c - I*k0)^4)/(8*k) + (3*(2*c - I*k0)^3*((2*c)/k - (I*k0)/k))/8) - 10*((-3*(3*c - I*k0)^4)/(8*k) + (3*(3*c - I*k0)^3*((3*c)/k - (I*k0)/k))/8) + 5*((-3*(4*c - I*k0)^4)/(8*k) + (3*(4*c - I*k0)^3*((4*c)/k - (I*k0)/k))/8))/k0, ((-2*(5*c - I*k0)^5)/k + (9*(5*c - I*k0)^4*((5*c)/k - (I*k0)/k))/8 - 5*((2*(c - I*k0)^5)/k - (9*(c - I*k0)^4*(c/k - (I*k0)/k))/8) + 10*((2*(2*c - I*k0)^5)/k - (9*(2*c - I*k0)^4*((2*c)/k - (I*k0)/k))/8) - 10*((2*(3*c - I*k0)^5)/k - (9*(3*c - I*k0)^4*((3*c)/k - (I*k0)/k))/8) + 5*((2*(4*c - I*k0)^5)/k - (9*(4*c - I*k0)^4*((4*c)/k - (I*k0)/k))/8))/k0, ((11*(5*c - I*k0)^6)/(8*k) - (7*I)/8*k0^5 - (11*(5*c - I*k0)^5*((5*c)/k - (I*k0)/k))/8 - 5*((-11*(c - I*k0)^6)/(8*k) + (11*(c - I*k0)^5*(c/k - (I*k0)/k))/8) + 10*((-11*(2*c - I*k0)^6)/(8*k) + (11*(2*c - I*k0)^5*((2*c)/k - (I*k0)/k))/8) - 10*((-11*(3*c - I*k0)^6)/(8*k) + (11*(3*c - I*k0)^5*((3*c)/k - (I*k0)/k))/8) + 5*((-11*(4*c - I*k0)^6)/(8*k) + (11*(4*c - I*k0)^5*((4*c)/k - (I*k0)/k))/8))/k0, ((45*(c - I*k0)^6*(c/k - (I*k0)/k))/16 - (45*(2*c - I*k0)^6*((2*c)/k - (I*k0)/k))/8 + (45*(3*c - I*k0)^6*((3*c)/k - (I*k0)/k))/8 - (45*(4*c - I*k0)^6*((4*c)/k - (I*k0)/k))/16 + (9*(5*c - I*k0)^6*((5*c)/k - (I*k0)/k))/16)/k0, ((-55*(5*c - I*k0)^8)/(128*k) - (9*I)/16*k0^7 + (55*(5*c - I*k0)^7*((5*c)/k - (I*k0)/k))/128 - 5*((55*(c - I*k0)^8)/(128*k) - (55*(c - I*k0)^7*(c/k - (I*k0)/k))/128) + 10*((55*(2*c - I*k0)^8)/(128*k) - (55*(2*c - I*k0)^7*((2*c)/k - (I*k0)/k))/128) - 10*((55*(3*c - I*k0)^8)/(128*k) - (55*(3*c - I*k0)^7*((3*c)/k - (I*k0)/k))/128) + 5*((55*(4*c - I*k0)^8)/(128*k) - (55*(4*c - I*k0)^7*((4*c)/k - (I*k0)/k))/128))/k0, ((-275*(c - I*k0)^8*(c/k - (I*k0)/k))/128 + (275*(2*c - I*k0)^8*((2*c)/k - (I*k0)/k))/64 - (275*(3*c - I*k0)^8*((3*c)/k - (I*k0)/k))/64 + (275*(4*c - I*k0)^8*((4*c)/k - (I*k0)/k))/128 - (55*(5*c - I*k0)^8*((5*c)/k - (I*k0)/k))/128)/k0, ((15*(5*c - I*k0)^10)/(64*k) - (55*I)/128*k0^9 - (15*(5*c - I*k0)^9*((5*c)/k - (I*k0)/k))/64 - 5*((-15*(c - I*k0)^10)/(64*k) + (15*(c - I*k0)^9*(c/k - (I*k0)/k))/64) + 10*((-15*(2*c - I*k0)^10)/(64*k) + (15*(2*c - I*k0)^9*((2*c)/k - (I*k0)/k))/64) - 10*((-15*(3*c - I*k0)^10)/(64*k) + (15*(3*c - I*k0)^9*((3*c)/k - (I*k0)/k))/64) + 5*((-15*(4*c - I*k0)^10)/(64*k) + (15*(4*c - I*k0)^9*((4*c)/k - (I*k0)/k))/64))/k0}, 0, 11, 1]
|
||||
((-5*(k^2*(-3 + Sqrt[1 + k^2/(c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2))/Sqrt[1 + k^2/(c - I*k0)^2] + (10*(k^2*(-3 + Sqrt[1 + k^2/(2*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2))/Sqrt[1 + k^2/(2*c - I*k0)^2] - (10*(k^2*(-3 + Sqrt[1 + k^2/(3*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2))/Sqrt[1 + k^2/(3*c - I*k0)^2] + (5*(k^2*(-3 + Sqrt[1 + k^2/(4*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2))/Sqrt[1 + k^2/(4*c - I*k0)^2] - (k^2*(-3 + Sqrt[1 + k^2/(5*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2)/Sqrt[1 + k^2/(5*c - I*k0)^2] + k^2*(1 - (3*k0)/Sqrt[-k^2 + k0^2]) + 4*k0^2*(-1 + k0/Sqrt[-k^2 + k0^2]))/(k^3*k0)
|
|
@ -0,0 +1,4 @@
|
|||
((-5*(k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4))/(k^4*Sqrt[1 + k^2/(c - I*k0)^2]*(c - I*k0)) + (10*(k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4))/(k^4*Sqrt[1 + k^2/(2*c - I*k0)^2]*(2*c - I*k0)) - (10*(k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4))/(k^4*Sqrt[1 + k^2/(3*c - I*k0)^2]*(3*c - I*k0)) + (5*(k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4))/(k^4*Sqrt[1 + k^2/(4*c - I*k0)^2]*(4*c - I*k0)) - (k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4)/(k^4*Sqrt[1 + k^2/(5*c - I*k0)^2]*(5*c - I*k0)) + (I*(k^4 + 8*k0^3*(k0 - Sqrt[-k^2 + k0^2]) + 4*k^2*k0*(-2*k0 + Sqrt[-k^2 + k0^2])))/(k^4*Sqrt[-k^2 + k0^2]))/k0
|
||||
((-5*(Power(k,4) - 4*Power(k,2)*(-2 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,2) - 8*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,4)))/(Power(k,4)*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2))*(c - Complex(0,1)*k0)) + (10*(Power(k,4) - 4*Power(k,2)*(-2 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,2) - 8*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,4)))/(Power(k,4)*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2))*(2*c - Complex(0,1)*k0)) - (10*(Power(k,4) - 4*Power(k,2)*(-2 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,2) - 8*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,4)))/(Power(k,4)*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2))*(3*c - Complex(0,1)*k0)) + (5*(Power(k,4) - 4*Power(k,2)*(-2 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,2) - 8*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,4)))/(Power(k,4)*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2))*(4*c - Complex(0,1)*k0)) - (Power(k,4) - 4*Power(k,2)*(-2 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,2) - 8*(-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,4))/(Power(k,4)*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2))*(5*c - Complex(0,1)*k0)) + (Complex(0,1)*(Power(k,4) + 8*Power(k0,3)*(k0 - Sqrt(-Power(k,2) + Power(k0,2))) + 4*Power(k,2)*k0*(-2*k0 + Sqrt(-Power(k,2) + Power(k0,2)))))/(Power(k,4)*Sqrt(-Power(k,2) + Power(k0,2))))/k0
|
||||
SeriesData[k, Infinity, {-(1/(k*k0)), (k - (4*I)*k0)/(k*k0), (I/2*(8*k - (15*I)*k0))/k, (-15*k*k0 + (16*I)*k0^2)/(2*k), ((-8*I)*k0^3 - (5*((4*(c - I*k0)^5)/k + (3*(c - I*k0)^4*(c/k - (I*k0)/k))/8))/(c - I*k0) + (10*((4*(2*c - I*k0)^5)/k + (3*(2*c - I*k0)^4*((2*c)/k - (I*k0)/k))/8))/(2*c - I*k0) - (10*((4*(3*c - I*k0)^5)/k + (3*(3*c - I*k0)^4*((3*c)/k - (I*k0)/k))/8))/(3*c - I*k0) + (5*((4*(4*c - I*k0)^5)/k + (3*(4*c - I*k0)^4*((4*c)/k - (I*k0)/k))/8))/(4*c - I*k0) + ((-4*(5*c - I*k0)^5)/k - (3*(5*c - I*k0)^4*((5*c)/k - (I*k0)/k))/8)/(5*c - I*k0))/k0, ((35*k0^4)/8 - (5*((3*(c - I*k0)^6)/(2*k) - (3*(c - I*k0)^5*(c/k - (I*k0)/k))/2))/(c - I*k0) + (10*((3*(2*c - I*k0)^6)/(2*k) - (3*(2*c - I*k0)^5*((2*c)/k - (I*k0)/k))/2))/(2*c - I*k0) - (10*((3*(3*c - I*k0)^6)/(2*k) - (3*(3*c - I*k0)^5*((3*c)/k - (I*k0)/k))/2))/(3*c - I*k0) + (5*((3*(4*c - I*k0)^6)/(2*k) - (3*(4*c - I*k0)^5*((4*c)/k - (I*k0)/k))/2))/(4*c - I*k0) + ((-3*(5*c - I*k0)^6)/(2*k) + (3*(5*c - I*k0)^5*((5*c)/k - (I*k0)/k))/2)/(5*c - I*k0))/k0, ((-5*((-4*(c - I*k0)^7)/k + (43*(c - I*k0)^6*(c/k - (I*k0)/k))/16))/(c - I*k0) + (10*((-4*(2*c - I*k0)^7)/k + (43*(2*c - I*k0)^6*((2*c)/k - (I*k0)/k))/16))/(2*c - I*k0) - (10*((-4*(3*c - I*k0)^7)/k + (43*(3*c - I*k0)^6*((3*c)/k - (I*k0)/k))/16))/(3*c - I*k0) + (5*((-4*(4*c - I*k0)^7)/k + (43*(4*c - I*k0)^6*((4*c)/k - (I*k0)/k))/16))/(4*c - I*k0) + ((4*(5*c - I*k0)^7)/k - (43*(5*c - I*k0)^6*((5*c)/k - (I*k0)/k))/16)/(5*c - I*k0))/k0, ((21*k0^6)/16 - (5*((5*(c - I*k0)^8)/(2*k) - (5*(c - I*k0)^7*(c/k - (I*k0)/k))/2))/(c - I*k0) + (10*((5*(2*c - I*k0)^8)/(2*k) - (5*(2*c - I*k0)^7*((2*c)/k - (I*k0)/k))/2))/(2*c - I*k0) - (10*((5*(3*c - I*k0)^8)/(2*k) - (5*(3*c - I*k0)^7*((3*c)/k - (I*k0)/k))/2))/(3*c - I*k0) + (5*((5*(4*c - I*k0)^8)/(2*k) - (5*(4*c - I*k0)^7*((4*c)/k - (I*k0)/k))/2))/(4*c - I*k0) + ((-5*(5*c - I*k0)^8)/(2*k) + (5*(5*c - I*k0)^7*((5*c)/k - (I*k0)/k))/2)/(5*c - I*k0))/k0, ((-495*(c - I*k0)^7*(c/k - (I*k0)/k))/128 + (495*(2*c - I*k0)^7*((2*c)/k - (I*k0)/k))/64 - (495*(3*c - I*k0)^7*((3*c)/k - (I*k0)/k))/64 + (495*(4*c - I*k0)^7*((4*c)/k - (I*k0)/k))/128 - (99*(5*c - I*k0)^7*((5*c)/k - (I*k0)/k))/128)/k0, ((99*k0^8)/128 - (5*((-23*(c - I*k0)^10)/(32*k) + (23*(c - I*k0)^9*(c/k - (I*k0)/k))/32))/(c - I*k0) + (10*((-23*(2*c - I*k0)^10)/(32*k) + (23*(2*c - I*k0)^9*((2*c)/k - (I*k0)/k))/32))/(2*c - I*k0) - (10*((-23*(3*c - I*k0)^10)/(32*k) + (23*(3*c - I*k0)^9*((3*c)/k - (I*k0)/k))/32))/(3*c - I*k0) + (5*((-23*(4*c - I*k0)^10)/(32*k) + (23*(4*c - I*k0)^9*((4*c)/k - (I*k0)/k))/32))/(4*c - I*k0) + ((23*(5*c - I*k0)^10)/(32*k) - (23*(5*c - I*k0)^9*((5*c)/k - (I*k0)/k))/32)/(5*c - I*k0))/k0, ((715*(c - I*k0)^9*(c/k - (I*k0)/k))/256 - (715*(2*c - I*k0)^9*((2*c)/k - (I*k0)/k))/128 + (715*(3*c - I*k0)^9*((3*c)/k - (I*k0)/k))/128 - (715*(4*c - I*k0)^9*((4*c)/k - (I*k0)/k))/256 + (143*(5*c - I*k0)^9*((5*c)/k - (I*k0)/k))/256)/k0}, 0, 11, 1]
|
||||
((-5*(k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4))/(Sqrt[1 + k^2/(c - I*k0)^2]*(c - I*k0)) + (10*(k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4))/(Sqrt[1 + k^2/(2*c - I*k0)^2]*(2*c - I*k0)) - (10*(k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4))/(Sqrt[1 + k^2/(3*c - I*k0)^2]*(3*c - I*k0)) + (5*(k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4))/(Sqrt[1 + k^2/(4*c - I*k0)^2]*(4*c - I*k0)) - (k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4)/(Sqrt[1 + k^2/(5*c - I*k0)^2]*(5*c - I*k0)) + (I*(k^4 + 8*k0^3*(k0 - Sqrt[-k^2 + k0^2]) + 4*k^2*k0*(-2*k0 + Sqrt[-k^2 + k0^2])))/Sqrt[-k^2 + k0^2])/(k^4*k0)
|
|
@ -0,0 +1,4 @@
|
|||
((-5*(k^4*(-5 + Sqrt[1 + k^2/(c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4))/(k^5*Sqrt[1 + k^2/(c - I*k0)^2]) + (10*(k^4*(-5 + Sqrt[1 + k^2/(2*c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4))/(k^5*Sqrt[1 + k^2/(2*c - I*k0)^2]) - (10*(k^4*(-5 + Sqrt[1 + k^2/(3*c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4))/(k^5*Sqrt[1 + k^2/(3*c - I*k0)^2]) + (5*(k^4*(-5 + Sqrt[1 + k^2/(4*c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4))/(k^5*Sqrt[1 + k^2/(4*c - I*k0)^2]) - (k^4*(-5 + Sqrt[1 + k^2/(5*c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4)/(k^5*Sqrt[1 + k^2/(5*c - I*k0)^2]) + (k^4*(1 - (5*k0)/Sqrt[-k^2 + k0^2]) + 16*k0^4*(1 - k0/Sqrt[-k^2 + k0^2]) + 4*k^2*k0^2*(-3 + (5*k0)/Sqrt[-k^2 + k0^2]))/k^5)/k0
|
||||
((-5*(Power(k,4)*(-5 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2))) + 4*Power(k,2)*(-5 + 3*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,2) + 16*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,4)))/(Power(k,5)*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2))) + (10*(Power(k,4)*(-5 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2))) + 4*Power(k,2)*(-5 + 3*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,2) + 16*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,4)))/(Power(k,5)*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2))) - (10*(Power(k,4)*(-5 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2))) + 4*Power(k,2)*(-5 + 3*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,2) + 16*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,4)))/(Power(k,5)*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2))) + (5*(Power(k,4)*(-5 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2))) + 4*Power(k,2)*(-5 + 3*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,2) + 16*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,4)))/(Power(k,5)*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2))) - (Power(k,4)*(-5 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2))) + 4*Power(k,2)*(-5 + 3*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,2) + 16*(-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,4))/(Power(k,5)*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2))) + (Power(k,4)*(1 - (5*k0)/Sqrt(-Power(k,2) + Power(k0,2))) + 16*Power(k0,4)*(1 - k0/Sqrt(-Power(k,2) + Power(k0,2))) + 4*Power(k,2)*Power(k0,2)*(-3 + (5*k0)/Sqrt(-Power(k,2) + Power(k0,2))))/Power(k,5))/k0
|
||||
SeriesData[k, Infinity, {-(1/(k*k0)), (k - (5*I)*k0)/(k*k0), (I*(5*k - (12*I)*k0))/k, (-24*k*k0 + (35*I)*k0^2)/(2*k), ((-125*(5*c - I*k0)^4)/(8*k) - (35*I)/2*k0^3 - (3*(5*c - I*k0)^3*((5*c)/k - (I*k0)/k))/8 - 5*((125*(c - I*k0)^4)/(8*k) + (3*(c - I*k0)^3*(c/k - (I*k0)/k))/8) + 10*((125*(2*c - I*k0)^4)/(8*k) + (3*(2*c - I*k0)^3*((2*c)/k - (I*k0)/k))/8) - 10*((125*(3*c - I*k0)^4)/(8*k) + (3*(3*c - I*k0)^3*((3*c)/k - (I*k0)/k))/8) + 5*((125*(4*c - I*k0)^4)/(8*k) + (3*(4*c - I*k0)^3*((4*c)/k - (I*k0)/k))/8))/k0, ((6*(5*c - I*k0)^5)/k + 16*k0^4 + (15*(5*c - I*k0)^4*((5*c)/k - (I*k0)/k))/8 - 5*((-6*(c - I*k0)^5)/k - (15*(c - I*k0)^4*(c/k - (I*k0)/k))/8) + 10*((-6*(2*c - I*k0)^5)/k - (15*(2*c - I*k0)^4*((2*c)/k - (I*k0)/k))/8) - 10*((-6*(3*c - I*k0)^5)/k - (15*(3*c - I*k0)^4*((3*c)/k - (I*k0)/k))/8) + 5*((-6*(4*c - I*k0)^5)/k - (15*(4*c - I*k0)^4*((4*c)/k - (I*k0)/k))/8))/k0, ((35*(5*c - I*k0)^6)/(8*k) + (63*I)/8*k0^5 - (35*(5*c - I*k0)^5*((5*c)/k - (I*k0)/k))/8 - 5*((-35*(c - I*k0)^6)/(8*k) + (35*(c - I*k0)^5*(c/k - (I*k0)/k))/8) + 10*((-35*(2*c - I*k0)^6)/(8*k) + (35*(2*c - I*k0)^5*((2*c)/k - (I*k0)/k))/8) - 10*((-35*(3*c - I*k0)^6)/(8*k) + (35*(3*c - I*k0)^5*((3*c)/k - (I*k0)/k))/8) + 5*((-35*(4*c - I*k0)^6)/(8*k) + (35*(4*c - I*k0)^5*((4*c)/k - (I*k0)/k))/8))/k0, ((-8*(5*c - I*k0)^7)/k + (95*(5*c - I*k0)^6*((5*c)/k - (I*k0)/k))/16 - 5*((8*(c - I*k0)^7)/k - (95*(c - I*k0)^6*(c/k - (I*k0)/k))/16) + 10*((8*(2*c - I*k0)^7)/k - (95*(2*c - I*k0)^6*((2*c)/k - (I*k0)/k))/16) - 10*((8*(3*c - I*k0)^7)/k - (95*(3*c - I*k0)^6*((3*c)/k - (I*k0)/k))/16) + 5*((8*(4*c - I*k0)^7)/k - (95*(4*c - I*k0)^6*((4*c)/k - (I*k0)/k))/16))/k0, ((585*(5*c - I*k0)^8)/(128*k) + (33*I)/16*k0^7 - (585*(5*c - I*k0)^7*((5*c)/k - (I*k0)/k))/128 - 5*((-585*(c - I*k0)^8)/(128*k) + (585*(c - I*k0)^7*(c/k - (I*k0)/k))/128) + 10*((-585*(2*c - I*k0)^8)/(128*k) + (585*(2*c - I*k0)^7*((2*c)/k - (I*k0)/k))/128) - 10*((-585*(3*c - I*k0)^8)/(128*k) + (585*(3*c - I*k0)^7*((3*c)/k - (I*k0)/k))/128) + 5*((-585*(4*c - I*k0)^8)/(128*k) + (585*(4*c - I*k0)^7*((4*c)/k - (I*k0)/k))/128))/k0, ((715*(c - I*k0)^8*(c/k - (I*k0)/k))/128 - (715*(2*c - I*k0)^8*((2*c)/k - (I*k0)/k))/64 + (715*(3*c - I*k0)^8*((3*c)/k - (I*k0)/k))/64 - (715*(4*c - I*k0)^8*((4*c)/k - (I*k0)/k))/128 + (143*(5*c - I*k0)^8*((5*c)/k - (I*k0)/k))/128)/k0, ((-77*(5*c - I*k0)^10)/(64*k) + (143*I)/128*k0^9 + (77*(5*c - I*k0)^9*((5*c)/k - (I*k0)/k))/64 - 5*((77*(c - I*k0)^10)/(64*k) - (77*(c - I*k0)^9*(c/k - (I*k0)/k))/64) + 10*((77*(2*c - I*k0)^10)/(64*k) - (77*(2*c - I*k0)^9*((2*c)/k - (I*k0)/k))/64) - 10*((77*(3*c - I*k0)^10)/(64*k) - (77*(3*c - I*k0)^9*((3*c)/k - (I*k0)/k))/64) + 5*((77*(4*c - I*k0)^10)/(64*k) - (77*(4*c - I*k0)^9*((4*c)/k - (I*k0)/k))/64))/k0}, 0, 11, 1]
|
||||
((-5*(k^4*(-5 + Sqrt[1 + k^2/(c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4))/Sqrt[1 + k^2/(c - I*k0)^2] + (10*(k^4*(-5 + Sqrt[1 + k^2/(2*c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4))/Sqrt[1 + k^2/(2*c - I*k0)^2] - (10*(k^4*(-5 + Sqrt[1 + k^2/(3*c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4))/Sqrt[1 + k^2/(3*c - I*k0)^2] + (5*(k^4*(-5 + Sqrt[1 + k^2/(4*c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4))/Sqrt[1 + k^2/(4*c - I*k0)^2] - (k^4*(-5 + Sqrt[1 + k^2/(5*c - I*k0)^2]) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 16*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4)/Sqrt[1 + k^2/(5*c - I*k0)^2] + k^4*(1 - (5*k0)/Sqrt[-k^2 + k0^2]) + 16*k0^4*(1 - k0/Sqrt[-k^2 + k0^2]) + 4*k^2*k0^2*(-3 + (5*k0)/Sqrt[-k^2 + k0^2]))/(k^5*k0)
|
|
@ -0,0 +1,11 @@
|
|||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[0, k*x])/(k0^2*x), {x, 0, Infinity}, Assumptions -> n == 0 && q == 2 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0]
|
||||
Integrate((Power(E,I*k0*x)*Power(1 - Power(E,-(c*x)),5)*BesselJ(0,k*x))/(Power(k0,2)*x),List(x,0,DirectedInfinity(1)),Rule(Assumptions,n == 0 && q == 2 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0))
|
||||
|
||||
-5 c x + I k0 x c x 5 2 2 4 4 6 6 8 8 Pi 2 2 4 4 6 6 8 8
|
||||
E (-1 + E ) ((-418854310875 + 29682132480 k x - 3901685760 k x + 1258291200 k x - 2147483648 k x ) Cos[-- + k x] + 4 Sqrt[2] k x (13043905875 - 1229437440 k x + 240844800 k x - 150994944 k x + 2147483648 k x ) (Cos[k x] + Sin[k x]))
|
||||
4
|
||||
Integrate::idiv: Integral of ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ does not converge on {0, Infinity}.
|
||||
19/2 2 21/2
|
||||
8589934592 k k0 Sqrt[2 Pi] x
|
||||
Series[Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[0, k*x])/(k0^2*x), {x, 0, Infinity}, Assumptions -> n == 0 && q == 2 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0], {k, Infinity, 10}]
|
||||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[0, k*x])/(k0^2*x), {x, 0, Infinity}, Assumptions -> n == 0 && q == 2 && κ == 5]
|
|
@ -0,0 +1,4 @@
|
|||
((-5*(k^2*(-3 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 4*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3))/(3*k^3) + (10*(k^2*(-3 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 4*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3))/(3*k^3) - (10*(k^2*(-3 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 4*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3))/(3*k^3) + (5*(k^2*(-3 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 4*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3))/(3*k^3) - (k^2*(-3 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 4*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3)/(3*k^3) - (I/3*(4*k0^2*(k0 - Sqrt[-k^2 + k0^2]) + k^2*(-3*k0 + Sqrt[-k^2 + k0^2])))/k^3)/k0^2
|
||||
((-5*(Power(k,2)*(-3 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*(c - Complex(0,1)*k0) + 4*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,3)))/(3.*Power(k,3)) + (10*(Power(k,2)*(-3 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*(2*c - Complex(0,1)*k0) + 4*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,3)))/(3.*Power(k,3)) - (10*(Power(k,2)*(-3 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*(3*c - Complex(0,1)*k0) + 4*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,3)))/(3.*Power(k,3)) + (5*(Power(k,2)*(-3 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*(4*c - Complex(0,1)*k0) + 4*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,3)))/(3.*Power(k,3)) - (Power(k,2)*(-3 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*(5*c - Complex(0,1)*k0) + 4*(-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,3))/(3.*Power(k,3)) - (Complex(0,0.3333333333333333)*(4*Power(k0,2)*(k0 - Sqrt(-Power(k,2) + Power(k0,2))) + Power(k,2)*(-3*k0 + Sqrt(-Power(k,2) + Power(k0,2)))))/Power(k,3))/Power(k0,2)
|
||||
SeriesData[k, Infinity, {(525*c^6)/(2*k0^2) - ((105*I)*c^5)/k0, 0, (14175*c^6)/4 - (70875*c^8)/(8*k0^2) + ((9450*I)*c^7)/k0 - (945*I)/2*c^5*k0, 0, (3465*(2025*c^10 - (3310*I)*c^9*k0 - 2250*c^8*k0^2 + (800*I)*c^7*k0^3 + 150*c^6*k0^4 - (12*I)*c^5*k0^5))/(32*k0^2)}, 6, 11, 1]
|
||||
-(5*k^2*(-3 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 20*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 - 10*k^2*(-3 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) - 40*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 10*k^2*(-3 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 40*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 - 5*k^2*(-3 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) - 20*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + k^2*(-3 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 4*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + (4*I)*k0^2*(k0 - Sqrt[-k^2 + k0^2]) + I*k^2*(-3*k0 + Sqrt[-k^2 + k0^2]))/(3*k^3*k0^2)
|
|
@ -0,0 +1,4 @@
|
|||
(-5*(1/4 - ((-2 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2)/k^2 - (2*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4)/k^4) + 10*(1/4 - ((-2 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2)/k^2 - (2*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4)/k^4) - 10*(1/4 - ((-2 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2)/k^2 - (2*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4)/k^4) + 5*(1/4 - ((-2 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2)/k^2 - (2*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4)/k^4) + ((-2 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2)/k^2 + (2*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4)/k^4 + (2*k0^3*(k0 - Sqrt[-k^2 + k0^2]))/k^4 + (k0*(-2*k0 + Sqrt[-k^2 + k0^2]))/k^2)/k0^2
|
||||
(-5*(0.25 - ((-2 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,2))/Power(k,2) - (2*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,4))/Power(k,4)) + 10*(0.25 - ((-2 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,2))/Power(k,2) - (2*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,4))/Power(k,4)) - 10*(0.25 - ((-2 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,2))/Power(k,2) - (2*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,4))/Power(k,4)) + 5*(0.25 - ((-2 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,2))/Power(k,2) - (2*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,4))/Power(k,4)) + ((-2 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,2))/Power(k,2) + (2*(-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,4))/Power(k,4) + (2*Power(k0,3)*(k0 - Sqrt(-Power(k,2) + Power(k0,2))))/Power(k,4) + (k0*(-2*k0 + Sqrt(-Power(k,2) + Power(k0,2))))/Power(k,2))/Power(k0,2)
|
||||
SeriesData[k, Infinity, {(105*c^5)/k0^2, 0, (945*c^5)/2 - (3150*c^7)/k0^2 + ((4725*I)/2*c^6)/k0, 0, (3465*(331*c^9 - (450*I)*c^8*k0 - 240*c^7*k0^2 + (60*I)*c^6*k0^3 + 6*c^5*k0^4))/(16*k0^2)}, 5, 11, 1]
|
||||
(5*k^2*(-2 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 10*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 - 10*k^2*(-2 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 - 20*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 + 10*k^2*(-2 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 20*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 - 5*k^2*(-2 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 - 10*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 + k^2*(-2 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 2*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 + 2*k0^3*(k0 - Sqrt[-k^2 + k0^2]) - k^2*k0*(2*k0 - Sqrt[-k^2 + k0^2]))/(k^4*k0^2)
|
|
@ -0,0 +1,4 @@
|
|||
(-((k^4*(-5 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5)/k^5) + (2*(k^4*(-5 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5))/k^5 - (2*(k^4*(-5 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5))/k^5 + (k^4*(-5 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5)/k^5 - (k^4*(-5 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5)/(5*k^5) + (I/5*(16*k0^4*(k0 - Sqrt[-k^2 + k0^2]) - k^4*(-5*k0 + Sqrt[-k^2 + k0^2]) + 4*k^2*k0^2*(-5*k0 + 3*Sqrt[-k^2 + k0^2])))/k^5)/k0^2
|
||||
(-((Power(k,4)*(-5 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*(c - Complex(0,1)*k0) + 4*Power(k,2)*(-5 + 3*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,3) + 16*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,5))/Power(k,5)) + (2*(Power(k,4)*(-5 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*(2*c - Complex(0,1)*k0) + 4*Power(k,2)*(-5 + 3*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,3) + 16*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,5)))/Power(k,5) - (2*(Power(k,4)*(-5 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*(3*c - Complex(0,1)*k0) + 4*Power(k,2)*(-5 + 3*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,3) + 16*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,5)))/Power(k,5) + (Power(k,4)*(-5 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*(4*c - Complex(0,1)*k0) + 4*Power(k,2)*(-5 + 3*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,3) + 16*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,5))/Power(k,5) - (Power(k,4)*(-5 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*(5*c - Complex(0,1)*k0) + 4*Power(k,2)*(-5 + 3*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,3) + 16*(-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,5))/(5.*Power(k,5)) + (Complex(0,0.2)*(16*Power(k0,4)*(k0 - Sqrt(-Power(k,2) + Power(k0,2))) - Power(k,4)*(-5*k0 + Sqrt(-Power(k,2) + Power(k0,2))) + 4*Power(k,2)*Power(k0,2)*(-5*k0 + 3*Sqrt(-Power(k,2) + Power(k0,2)))))/Power(k,5))/Power(k0,2)
|
||||
SeriesData[k, Infinity, {(384*c^5)/k0^2, (-4725*c^6)/(2*k0^2) + ((945*I)*c^5)/k0, 0, (-51975*c^6)/4 + (259875*c^8)/(8*k0^2) - ((34650*I)*c^7)/k0 + (3465*I)/2*c^5*k0, 0, (-9009*(2025*c^10 - (3310*I)*c^9*k0 - 2250*c^8*k0^2 + (800*I)*c^7*k0^3 + 150*c^6*k0^4 - (12*I)*c^5*k0^5))/(32*k0^2)}, 5, 11, 1]
|
||||
-(5*(k^4*(-5 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5) - 10*(k^4*(-5 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5) + 10*(k^4*(-5 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5) - 5*(k^4*(-5 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5) + k^4*(-5 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 4*k^2*(-5 + 3*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 16*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5 - I*(16*k0^4*(k0 - Sqrt[-k^2 + k0^2]) - k^4*(-5*k0 + Sqrt[-k^2 + k0^2]) + 4*k^2*k0^2*(-5*k0 + 3*Sqrt[-k^2 + k0^2])))/(5*k^5*k0^2)
|
|
@ -0,0 +1,11 @@
|
|||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[0, k*x])/(k0^3*x^2), {x, 0, Infinity}, Assumptions -> n == 0 && q == 3 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0]
|
||||
Integrate((Power(E,I*k0*x)*Power(1 - Power(E,-(c*x)),5)*BesselJ(0,k*x))/(Power(k0,3)*Power(x,2)),List(x,0,DirectedInfinity(1)),Rule(Assumptions,n == 0 && q == 3 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0))
|
||||
|
||||
I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x 2 Pi -5 c x + I k0 x 2 Pi -4 c x + I k0 x 2 Pi -3 c x + I k0 x 2 Pi -2 c x + I k0 x 2 Pi -(c x) + I k0 x 2 Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi
|
||||
13043905875 E Cos[-- - k x] 13043905875 E Cos[-- - k x] 65219529375 E Cos[-- - k x] 65219529375 E Cos[-- - k x] 65219529375 E Cos[-- - k x] 65219529375 E Cos[-- - k x] 2401245 E Cos[-- - k x] 2401245 E Cos[-- - k x] 12006225 E Cos[-- - k x] 12006225 E Cos[-- - k x] 12006225 E Cos[-- - k x] 12006225 E Cos[-- - k x] 3675 E Cos[-- - k x] 3675 E Cos[-- - k x] 18375 E Cos[-- - k x] 18375 E Cos[-- - k x] 18375 E Cos[-- - k x] 18375 E Cos[-- - k x] 9 E Cos[-- - k x] 9 E Cos[-- - k x] 45 E Cos[-- - k x] 45 E Cos[-- - k x] 45 E Cos[-- - k x] 45 E Cos[-- - k x] E Sqrt[--] Cos[-- - k x] E Sqrt[--] Cos[-- - k x] 5 E Sqrt[--] Cos[-- - k x] 10 E Sqrt[--] Cos[-- - k x] 10 E Sqrt[--] Cos[-- - k x] 5 E Sqrt[--] Cos[-- - k x] 418854310875 E Sin[-- - k x] 418854310875 E Sin[-- - k x] 2094271554375 E Sin[-- - k x] 2094271554375 E Sin[-- - k x] 2094271554375 E Sin[-- - k x] 2094271554375 E Sin[-- - k x] 57972915 E Sin[-- - k x] 57972915 E Sin[-- - k x] 289864575 E Sin[-- - k x] 289864575 E Sin[-- - k x] 289864575 E Sin[-- - k x] 289864575 E Sin[-- - k x] 59535 E Sin[-- - k x] 59535 E Sin[-- - k x] 297675 E Sin[-- - k x] 297675 E Sin[-- - k x] 297675 E Sin[-- - k x] 297675 E Sin[-- - k x] 75 E Sin[-- - k x] 75 E Sin[-- - k x] 375 E Sin[-- - k x] 375 E Sin[-- - k x] 375 E Sin[-- - k x] 375 E Sin[-- - k x] E Sin[-- - k x] E Sin[-- - k x] 5 E Sin[-- - k x] 5 E Sin[-- - k x] 5 E Sin[-- - k x] 5 E Sin[-- - k x]
|
||||
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
|
||||
Integrate::idiv: Integral of ------------------------------------- - ------------------------------------------ + ------------------------------------------ - ------------------------------------------ + ------------------------------------------ - ------------------------------------------ - ---------------------------------- + -------------------------------------- - --------------------------------------- + --------------------------------------- - --------------------------------------- + --------------------------------------- + ------------------------------- - ----------------------------------- + ------------------------------------ - ------------------------------------ + ------------------------------------ - ------------------------------------ - --------------------------- + -------------------------------- - --------------------------------- + --------------------------------- - --------------------------------- + --------------------------------- + ------------------------------ - --------------------------------------- + ----------------------------------------- - ------------------------------------------ + ------------------------------------------ - ----------------------------------------- - ------------------------------------- + ------------------------------------------- - -------------------------------------------- + -------------------------------------------- - -------------------------------------------- + -------------------------------------------- + ----------------------------------- - --------------------------------------- + ---------------------------------------- - ---------------------------------------- + ---------------------------------------- - ---------------------------------------- - --------------------------------- + ------------------------------------ - ------------------------------------- + ------------------------------------- - ------------------------------------- + ------------------------------------- + ----------------------------- - --------------------------------- + ---------------------------------- - ---------------------------------- + ---------------------------------- - ---------------------------------- - -------------------------- + ------------------------------ - -------------------------------- + -------------------------------- - -------------------------------- + -------------------------------- does not converge on {0, Infinity}.
|
||||
17/2 3 21/2 17/2 3 21/2 17/2 3 21/2 17/2 3 21/2 17/2 3 21/2 17/2 3 21/2 13/2 3 17/2 13/2 3 17/2 13/2 3 17/2 13/2 3 17/2 13/2 3 17/2 13/2 3 17/2 9/2 3 13/2 9/2 3 13/2 9/2 3 13/2 9/2 3 13/2 9/2 3 13/2 9/2 3 13/2 5/2 3 9/2 5/2 3 9/2 5/2 3 9/2 5/2 3 9/2 5/2 3 9/2 5/2 3 9/2 3 5/2 3 5/2 3 5/2 3 5/2 3 5/2 3 5/2 19/2 3 23/2 19/2 3 23/2 19/2 3 23/2 19/2 3 23/2 19/2 3 23/2 19/2 3 23/2 15/2 3 19/2 15/2 3 19/2 15/2 3 19/2 15/2 3 19/2 15/2 3 19/2 15/2 3 19/2 11/2 3 15/2 11/2 3 15/2 11/2 3 15/2 11/2 3 15/2 11/2 3 15/2 11/2 3 15/2 7/2 3 11/2 7/2 3 11/2 7/2 3 11/2 7/2 3 11/2 7/2 3 11/2 7/2 3 11/2 3/2 3 7/2 3/2 3 7/2 3/2 3 7/2 3/2 3 7/2 3/2 3 7/2 3/2 3 7/2
|
||||
1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x
|
||||
Series[Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[0, k*x])/(k0^3*x^2), {x, 0, Infinity}, Assumptions -> n == 0 && q == 3 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0], {k, Infinity, 10}]
|
||||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[0, k*x])/(k0^3*x^2), {x, 0, Infinity}, Assumptions -> n == 0 && q == 3 && κ == 5]
|
|
@ -0,0 +1,11 @@
|
|||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[1, k*x])/(k0^3*x^2), {x, 0, Infinity}, Assumptions -> n == 1 && q == 3 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0]
|
||||
Integrate((Power(E,I*k0*x)*Power(1 - Power(E,-(c*x)),5)*BesselJ(1,k*x))/(Power(k0,3)*Power(x,2)),List(x,0,DirectedInfinity(1)),Rule(Assumptions,n == 1 && q == 3 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0))
|
||||
|
||||
I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x 2 Pi -5 c x + I k0 x 2 Pi -4 c x + I k0 x 2 Pi -3 c x + I k0 x 2 Pi -2 c x + I k0 x 2 Pi -(c x) + I k0 x 2 Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi
|
||||
14783093325 E Cos[-- + k x] 14783093325 E Cos[-- + k x] 73915466625 E Cos[-- + k x] 73915466625 E Cos[-- + k x] 73915466625 E Cos[-- + k x] 73915466625 E Cos[-- + k x] 2837835 E Cos[-- + k x] 2837835 E Cos[-- + k x] 14189175 E Cos[-- + k x] 14189175 E Cos[-- + k x] 14189175 E Cos[-- + k x] 14189175 E Cos[-- + k x] 4725 E Cos[-- + k x] 4725 E Cos[-- + k x] 23625 E Cos[-- + k x] 23625 E Cos[-- + k x] 23625 E Cos[-- + k x] 23625 E Cos[-- + k x] 15 E Cos[-- + k x] 15 E Cos[-- + k x] 75 E Cos[-- + k x] 75 E Cos[-- + k x] 75 E Cos[-- + k x] 75 E Cos[-- + k x] E Sqrt[--] Cos[-- + k x] E Sqrt[--] Cos[-- + k x] 5 E Sqrt[--] Cos[-- + k x] 10 E Sqrt[--] Cos[-- + k x] 10 E Sqrt[--] Cos[-- + k x] 5 E Sqrt[--] Cos[-- + k x] 468131288625 E Sin[-- + k x] 468131288625 E Sin[-- + k x] 2340656443125 E Sin[-- + k x] 2340656443125 E Sin[-- + k x] 2340656443125 E Sin[-- + k x] 2340656443125 E Sin[-- + k x] 66891825 E Sin[-- + k x] 66891825 E Sin[-- + k x] 334459125 E Sin[-- + k x] 334459125 E Sin[-- + k x] 334459125 E Sin[-- + k x] 334459125 E Sin[-- + k x] 72765 E Sin[-- + k x] 72765 E Sin[-- + k x] 363825 E Sin[-- + k x] 363825 E Sin[-- + k x] 363825 E Sin[-- + k x] 363825 E Sin[-- + k x] 105 E Sin[-- + k x] 105 E Sin[-- + k x] 525 E Sin[-- + k x] 525 E Sin[-- + k x] 525 E Sin[-- + k x] 525 E Sin[-- + k x] 3 E Sin[-- + k x] 3 E Sin[-- + k x] 15 E Sin[-- + k x] 15 E Sin[-- + k x] 15 E Sin[-- + k x] 15 E Sin[-- + k x]
|
||||
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
|
||||
Integrate::idiv: Integral of ------------------------------------- - ------------------------------------------ + ------------------------------------------ - ------------------------------------------ + ------------------------------------------ - ------------------------------------------ - ---------------------------------- + -------------------------------------- - --------------------------------------- + --------------------------------------- - --------------------------------------- + --------------------------------------- + ------------------------------- - ----------------------------------- + ------------------------------------ - ------------------------------------ + ------------------------------------ - ------------------------------------ - --------------------------- + --------------------------------- - --------------------------------- + --------------------------------- - --------------------------------- + --------------------------------- - ------------------------------ + --------------------------------------- - ----------------------------------------- + ------------------------------------------ - ------------------------------------------ + ----------------------------------------- + ------------------------------------- - ------------------------------------------- + -------------------------------------------- - -------------------------------------------- + -------------------------------------------- - -------------------------------------------- - ----------------------------------- + --------------------------------------- - ---------------------------------------- + ---------------------------------------- - ---------------------------------------- + ---------------------------------------- + --------------------------------- - ------------------------------------ + ------------------------------------- - ------------------------------------- + ------------------------------------- - ------------------------------------- - ----------------------------- + ---------------------------------- - ---------------------------------- + ---------------------------------- - ---------------------------------- + ---------------------------------- + -------------------------- - -------------------------------- + --------------------------------- - --------------------------------- + --------------------------------- - --------------------------------- does not converge on {0, Infinity}.
|
||||
17/2 3 21/2 17/2 3 21/2 17/2 3 21/2 17/2 3 21/2 17/2 3 21/2 17/2 3 21/2 13/2 3 17/2 13/2 3 17/2 13/2 3 17/2 13/2 3 17/2 13/2 3 17/2 13/2 3 17/2 9/2 3 13/2 9/2 3 13/2 9/2 3 13/2 9/2 3 13/2 9/2 3 13/2 9/2 3 13/2 5/2 3 9/2 5/2 3 9/2 5/2 3 9/2 5/2 3 9/2 5/2 3 9/2 5/2 3 9/2 3 5/2 3 5/2 3 5/2 3 5/2 3 5/2 3 5/2 19/2 3 23/2 19/2 3 23/2 19/2 3 23/2 19/2 3 23/2 19/2 3 23/2 19/2 3 23/2 15/2 3 19/2 15/2 3 19/2 15/2 3 19/2 15/2 3 19/2 15/2 3 19/2 15/2 3 19/2 11/2 3 15/2 11/2 3 15/2 11/2 3 15/2 11/2 3 15/2 11/2 3 15/2 11/2 3 15/2 7/2 3 11/2 7/2 3 11/2 7/2 3 11/2 7/2 3 11/2 7/2 3 11/2 7/2 3 11/2 3/2 3 7/2 3/2 3 7/2 3/2 3 7/2 3/2 3 7/2 3/2 3 7/2 3/2 3 7/2
|
||||
1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x
|
||||
Series[Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[1, k*x])/(k0^3*x^2), {x, 0, Infinity}, Assumptions -> n == 1 && q == 3 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0], {k, Infinity, 10}]
|
||||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[1, k*x])/(k0^3*x^2), {x, 0, Infinity}, Assumptions -> n == 1 && q == 3 && κ == 5]
|
|
@ -0,0 +1,4 @@
|
|||
(-5*(((-3 + 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0))/6 + ((-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3)/(3*k^2)) + 10*(((-3 + 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0))/6 + ((-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3)/(3*k^2)) - 10*(((-3 + 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0))/6 + ((-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3)/(3*k^2)) + 5*(((-3 + 2*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0))/6 + ((-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3)/(3*k^2)) - ((-3 + 2*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0))/6 - ((-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3)/(3*k^2) + I/6*(3*k0 - (2*k0^3)/k^2 - 2*Sqrt[-k^2 + k0^2] + (2*k0^2*Sqrt[-k^2 + k0^2])/k^2))/k0^3
|
||||
(-5*(((-3 + 2*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*(c - Complex(0,1)*k0))/6. + ((-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,3))/(3.*Power(k,2))) + 10*(((-3 + 2*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*(2*c - Complex(0,1)*k0))/6. + ((-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,3))/(3.*Power(k,2))) - 10*(((-3 + 2*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*(3*c - Complex(0,1)*k0))/6. + ((-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,3))/(3.*Power(k,2))) + 5*(((-3 + 2*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*(4*c - Complex(0,1)*k0))/6. + ((-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,3))/(3.*Power(k,2))) - ((-3 + 2*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*(5*c - Complex(0,1)*k0))/6. - ((-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,3))/(3.*Power(k,2)) + Complex(0,0.16666666666666666)*(3*k0 - (2*Power(k0,3))/Power(k,2) - 2*Sqrt(-Power(k,2) + Power(k0,2)) + (2*Power(k0,2)*Sqrt(-Power(k,2) + Power(k0,2)))/Power(k,2)))/Power(k0,3)
|
||||
SeriesData[k, Infinity, {(75*c^6)/(2*k0^3) - ((15*I)*c^5)/k0^2, 0, (-105*(75*c^8 - (80*I)*c^7*k0 - 30*c^6*k0^2 + (4*I)*c^5*k0^3))/(8*k0^3), 0, (315*(2025*c^10 - (3310*I)*c^9*k0 - 2250*c^8*k0^2 + (800*I)*c^7*k0^3 + 150*c^6*k0^4 - (12*I)*c^5*k0^5))/(32*k0^3)}, 5, 11, 1]
|
||||
(5*k^2*(3 - 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) - 10*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 10*k^2*(-3 + 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 20*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 10*k^2*(3 - 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) - 20*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 5*k^2*(-3 + 2*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 10*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + k^2*(3 - 2*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) - 2*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + I*(k^2*(3*k0 - 2*Sqrt[-k^2 + k0^2]) + 2*k0^2*(-k0 + Sqrt[-k^2 + k0^2])))/(6*k^2*k0^3)
|
|
@ -0,0 +1,4 @@
|
|||
((-5*(3*k^4 + 4*k^2*(3 - 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4))/(24*k^3) + (5*(3*k^4 + 4*k^2*(3 - 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4))/(12*k^3) - (5*(3*k^4 + 4*k^2*(3 - 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4))/(12*k^3) + (5*(3*k^4 + 4*k^2*(3 - 2*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4))/(24*k^3) - (3*k^4 + 4*k^2*(3 - 2*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4)/(24*k^3) + (3*k^4 + 8*k0^3*(k0 - Sqrt[-k^2 + k0^2]) + 4*k^2*k0*(-3*k0 + 2*Sqrt[-k^2 + k0^2]))/(24*k^3))/k0^3
|
||||
((-5*(3*Power(k,4) + 4*Power(k,2)*(3 - 2*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,2) - 8*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,4)))/(24.*Power(k,3)) + (5*(3*Power(k,4) + 4*Power(k,2)*(3 - 2*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,2) - 8*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,4)))/(12.*Power(k,3)) - (5*(3*Power(k,4) + 4*Power(k,2)*(3 - 2*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,2) - 8*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,4)))/(12.*Power(k,3)) + (5*(3*Power(k,4) + 4*Power(k,2)*(3 - 2*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,2) - 8*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,4)))/(24.*Power(k,3)) - (3*Power(k,4) + 4*Power(k,2)*(3 - 2*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,2) - 8*(-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,4))/(24.*Power(k,3)) + (3*Power(k,4) + 8*Power(k0,3)*(k0 - Sqrt(-Power(k,2) + Power(k0,2))) + 4*Power(k,2)*k0*(-3*k0 + 2*Sqrt(-Power(k,2) + Power(k0,2))))/(24.*Power(k,3)))/Power(k0,3)
|
||||
SeriesData[k, Infinity, {(15*c^5)/k0^3, 0, (-35*(20*c^7 - (15*I)*c^6*k0 - 3*c^5*k0^2))/(2*k0^3), 0, (315*(331*c^9 - (450*I)*c^8*k0 - 240*c^7*k0^2 + (60*I)*c^6*k0^3 + 6*c^5*k0^4))/(16*k0^3), 0, (-165*(22430*c^11 - (42525*I)*c^10*k0 - 34755*c^9*k0^2 + (15750*I)*c^8*k0^3 + 4200*c^7*k0^4 - (630*I)*c^6*k0^5 - 42*c^5*k0^6))/(32*k0^3)}, 4, 11, 1]
|
||||
(5*k^2*(-3 + 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 10*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 + 10*k^2*(3 - 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 - 20*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 + 10*k^2*(-3 + 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 20*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 + 5*k^2*(3 - 2*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 - 10*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 + k^2*(-3 + 2*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 2*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 + 2*k0^3*(k0 - Sqrt[-k^2 + k0^2]) + k^2*k0*(-3*k0 + 2*Sqrt[-k^2 + k0^2]))/(6*k^3*k0^3)
|
|
@ -0,0 +1,4 @@
|
|||
(-(k^4*(-15 + 4*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5)/(12*k^4) + (k^4*(-15 + 4*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5)/(6*k^4) - (k^4*(-15 + 4*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5)/(6*k^4) + (k^4*(-15 + 4*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5)/(12*k^4) - (k^4*(-15 + 4*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5)/(60*k^4) + (I/60*(k^4*(15*k0 - 4*Sqrt[-k^2 + k0^2]) + 24*k0^4*(k0 - Sqrt[-k^2 + k0^2]) + 4*k^2*k0^2*(-10*k0 + 7*Sqrt[-k^2 + k0^2])))/k^4)/k0^3
|
||||
(-(Power(k,4)*(-15 + 4*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*(c - Complex(0,1)*k0) + 4*Power(k,2)*(-10 + 7*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,3) + 24*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,5))/(12.*Power(k,4)) + (Power(k,4)*(-15 + 4*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*(2*c - Complex(0,1)*k0) + 4*Power(k,2)*(-10 + 7*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,3) + 24*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,5))/(6.*Power(k,4)) - (Power(k,4)*(-15 + 4*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*(3*c - Complex(0,1)*k0) + 4*Power(k,2)*(-10 + 7*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,3) + 24*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,5))/(6.*Power(k,4)) + (Power(k,4)*(-15 + 4*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*(4*c - Complex(0,1)*k0) + 4*Power(k,2)*(-10 + 7*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,3) + 24*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,5))/(12.*Power(k,4)) - (Power(k,4)*(-15 + 4*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*(5*c - Complex(0,1)*k0) + 4*Power(k,2)*(-10 + 7*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,3) + 24*(-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,5))/(60.*Power(k,4)) + (Complex(0,0.016666666666666666)*(Power(k,4)*(15*k0 - 4*Sqrt(-Power(k,2) + Power(k0,2))) + 24*Power(k0,4)*(k0 - Sqrt(-Power(k,2) + Power(k0,2))) + 4*Power(k,2)*Power(k0,2)*(-10*k0 + 7*Sqrt(-Power(k,2) + Power(k0,2)))))/Power(k,4))/Power(k0,3)
|
||||
SeriesData[k, Infinity, {(48*c^5)/k0^3, (-525*c^6)/(2*k0^3) + ((105*I)*c^5)/k0^2, 0, (315*(75*c^8 - (80*I)*c^7*k0 - 30*c^6*k0^2 + (4*I)*c^5*k0^3))/(8*k0^3), 0, (-693*(2025*c^10 - (3310*I)*c^9*k0 - 2250*c^8*k0^2 + (800*I)*c^7*k0^3 + 150*c^6*k0^4 - (12*I)*c^5*k0^5))/(32*k0^3)}, 4, 11, 1]
|
||||
-(5*(k^4*(-15 + 4*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5) - 10*(k^4*(-15 + 4*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5) + 10*(k^4*(-15 + 4*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5) - 5*(k^4*(-15 + 4*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5) + k^4*(-15 + 4*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 4*k^2*(-10 + 7*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 24*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5 - I*(k^4*(15*k0 - 4*Sqrt[-k^2 + k0^2]) + 24*k0^4*(k0 - Sqrt[-k^2 + k0^2]) + 4*k^2*k0^2*(-10*k0 + 7*Sqrt[-k^2 + k0^2])))/(60*k^4*k0^3)
|
|
@ -0,0 +1,4 @@
|
|||
(-(5*k^6 + 12*k^4*(5 - 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 8*k^2*(15 - 11*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 - 64*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6)/(24*k^5) + (5*k^6 + 12*k^4*(5 - 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 8*k^2*(15 - 11*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 - 64*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6)/(12*k^5) - (5*k^6 + 12*k^4*(5 - 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 8*k^2*(15 - 11*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 - 64*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6)/(12*k^5) + (5*k^6 + 12*k^4*(5 - 2*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 8*k^2*(15 - 11*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 - 64*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6)/(24*k^5) - (5*k^6 + 12*k^4*(5 - 2*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 8*k^2*(15 - 11*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 - 64*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^6)/(120*k^5) + (5*k^6 + 8*k^2*k0^3*(15*k0 - 11*Sqrt[-k^2 + k0^2]) + 64*k0^5*(-k0 + Sqrt[-k^2 + k0^2]) + 12*k^4*k0*(-5*k0 + 2*Sqrt[-k^2 + k0^2]))/(120*k^5))/k0^3
|
||||
(-(5*Power(k,6) + 12*Power(k,4)*(5 - 2*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,2) + 8*Power(k,2)*(15 - 11*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,4) - 64*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,6))/(24.*Power(k,5)) + (5*Power(k,6) + 12*Power(k,4)*(5 - 2*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,2) + 8*Power(k,2)*(15 - 11*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,4) - 64*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,6))/(12.*Power(k,5)) - (5*Power(k,6) + 12*Power(k,4)*(5 - 2*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,2) + 8*Power(k,2)*(15 - 11*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,4) - 64*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,6))/(12.*Power(k,5)) + (5*Power(k,6) + 12*Power(k,4)*(5 - 2*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,2) + 8*Power(k,2)*(15 - 11*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,4) - 64*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,6))/(24.*Power(k,5)) - (5*Power(k,6) + 12*Power(k,4)*(5 - 2*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,2) + 8*Power(k,2)*(15 - 11*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,4) - 64*(-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,6))/(120.*Power(k,5)) + (5*Power(k,6) + 8*Power(k,2)*Power(k0,3)*(15*k0 - 11*Sqrt(-Power(k,2) + Power(k0,2))) + 64*Power(k0,5)*(-k0 + Sqrt(-Power(k,2) + Power(k0,2))) + 12*Power(k,4)*k0*(-5*k0 + 2*Sqrt(-Power(k,2) + Power(k0,2))))/(120.*Power(k,5)))/Power(k0,3)
|
||||
SeriesData[k, Infinity, {(105*c^5)/k0^3, (-960*c^6)/k0^3 + ((384*I)*c^5)/k0^2, (315*(20*c^7 - (15*I)*c^6*k0 - 3*c^5*k0^2))/(2*k0^3), 0, (-1155*(331*c^9 - (450*I)*c^8*k0 - 240*c^7*k0^2 + (60*I)*c^6*k0^3 + 6*c^5*k0^4))/(16*k0^3), 0, (429*(22430*c^11 - (42525*I)*c^10*k0 - 34755*c^9*k0^2 + (15750*I)*c^8*k0^3 + 4200*c^7*k0^4 - (630*I)*c^6*k0^5 - 42*c^5*k0^6))/(32*k0^3)}, 4, 11, 1]
|
||||
(15*k^4*(-5 + 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 10*k^2*(-15 + 11*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 + 80*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6 + 30*k^4*(5 - 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 20*k^2*(15 - 11*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 - 160*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6 + 30*k^4*(-5 + 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 20*k^2*(-15 + 11*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 + 160*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6 + 15*k^4*(5 - 2*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 10*k^2*(15 - 11*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 - 80*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6 + 3*k^4*(-5 + 2*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 2*k^2*(-15 + 11*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 + 16*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^6 + 2*k^2*k0^3*(15*k0 - 11*Sqrt[-k^2 + k0^2]) + 16*k0^5*(-k0 + Sqrt[-k^2 + k0^2]) + 3*k^4*k0*(-5*k0 + 2*Sqrt[-k^2 + k0^2]))/(30*k^5*k0^3)
|
|
@ -0,0 +1,13 @@
|
|||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[0, k*x])/(k0^4*x^3), {x, 0, Infinity}, Assumptions -> n == 0 && q == 4 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0]
|
||||
Integrate((Power(E,I*k0*x)*Power(1 - Power(E,-(c*x)),5)*BesselJ(0,k*x))/(Power(k0,4)*Power(x,3)),List(x,0,DirectedInfinity(1)),Rule(Assumptions,n == 0 && q == 4 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0))
|
||||
|
||||
I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x 2 Pi -5 c x + I k0 x 2 Pi -4 c x + I k0 x 2 Pi -3 c x + I k0 x 2 Pi -2 c x + I k0 x 2 Pi -(c x) + I k0 x 2 Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi
|
||||
13043905875 E Cos[-- - k x] 13043905875 E Cos[-- - k x] 65219529375 E Cos[-- - k x] 65219529375 E Cos[-- - k x] 65219529375 E Cos[-- - k x] 65219529375 E Cos[-- - k x] 2401245 E Cos[-- - k x] 2401245 E Cos[-- - k x] 12006225 E Cos[-- - k x] 12006225 E Cos[-- - k x] 12006225 E Cos[-- - k x] 12006225 E Cos[-- - k x] 3675 E Cos[-- - k x] 3675 E Cos[-- - k x] 18375 E Cos[-- - k x] 18375 E Cos[-- - k x] 18375 E Cos[-- - k x] 18375 E Cos[-- - k x] 9 E Cos[-- - k x] 9 E Cos[-- - k x] 45 E Cos[-- - k x] 45 E Cos[-- - k x] 45 E Cos[-- - k x] 45 E Cos[-- - k x] E Sqrt[--] Cos[-- - k x] E Sqrt[--] Cos[-- - k x] 5 E Sqrt[--] Cos[-- - k x] 10 E Sqrt[--] Cos[-- - k x] 10 E Sqrt[--] Cos[-- - k x] 5 E Sqrt[--] Cos[-- - k x] 418854310875 E Sin[-- - k x] 418854310875 E Sin[-- - k x] 2094271554375 E Sin[-- - k x] 2094271554375 E Sin[-- - k x] 2094271554375 E Sin[-- - k x] 2094271554375 E Sin[-- - k x] 57972915 E Sin[-- - k x] 57972915 E Sin[-- - k x] 289864575 E Sin[-- - k x] 289864575 E Sin[-- - k x] 289864575 E Sin[-- - k x] 289864575 E Sin[-- - k x] 59535 E Sin[-- - k x] 59535 E Sin[-- - k x] 297675 E Sin[-- - k x] 297675 E Sin[-- - k x] 297675 E Sin[-- - k x] 297675 E Sin[-- - k x] 75 E Sin[-- - k x] 75 E Sin[-- - k x] 375 E Sin[-- - k x] 375 E Sin[-- - k x] 375 E Sin[-- - k x] 375 E Sin[-- - k x] E Sin[-- - k x] E Sin[-- - k x] 5 E Sin[-- - k x] 5 E Sin[-- - k x] 5 E Sin[-- - k x] 5 E Sin[-- - k x]
|
||||
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
|
||||
Integrate::idiv: Integral of ------------------------------------- - ------------------------------------------ + ------------------------------------------ - ------------------------------------------ + ------------------------------------------ - ------------------------------------------ - ---------------------------------- + -------------------------------------- - --------------------------------------- + --------------------------------------- - --------------------------------------- + --------------------------------------- + ------------------------------- - ----------------------------------- + ------------------------------------ - ------------------------------------ + ------------------------------------ - ------------------------------------ - ---------------------------- + -------------------------------- - --------------------------------- + --------------------------------- - --------------------------------- + --------------------------------- + ------------------------------ - --------------------------------------- + ----------------------------------------- - ------------------------------------------ + ------------------------------------------ - ----------------------------------------- - ------------------------------------- + ------------------------------------------- - -------------------------------------------- + -------------------------------------------- - -------------------------------------------- + -------------------------------------------- + ----------------------------------- - --------------------------------------- + ---------------------------------------- - ---------------------------------------- + ---------------------------------------- - ---------------------------------------- - --------------------------------- + ------------------------------------ - ------------------------------------- + ------------------------------------- - ------------------------------------- + ------------------------------------- + ----------------------------- - --------------------------------- + ---------------------------------- - ---------------------------------- + ---------------------------------- - ---------------------------------- - -------------------------- + ------------------------------ - -------------------------------- + -------------------------------- - -------------------------------- + -------------------------------- does not converge on {0, Infinity}.
|
||||
17/2 4 23/2 17/2 4 23/2 17/2 4 23/2 17/2 4 23/2 17/2 4 23/2 17/2 4 23/2 13/2 4 19/2 13/2 4 19/2 13/2 4 19/2 13/2 4 19/2 13/2 4 19/2 13/2 4 19/2 9/2 4 15/2 9/2 4 15/2 9/2 4 15/2 9/2 4 15/2 9/2 4 15/2 9/2 4 15/2 5/2 4 11/2 5/2 4 11/2 5/2 4 11/2 5/2 4 11/2 5/2 4 11/2 5/2 4 11/2 4 7/2 4 7/2 4 7/2 4 7/2 4 7/2 4 7/2 19/2 4 25/2 19/2 4 25/2 19/2 4 25/2 19/2 4 25/2 19/2 4 25/2 19/2 4 25/2 15/2 4 21/2 15/2 4 21/2 15/2 4 21/2 15/2 4 21/2 15/2 4 21/2 15/2 4 21/2 11/2 4 17/2 11/2 4 17/2 11/2 4 17/2 11/2 4 17/2 11/2 4 17/2 11/2 4 17/2 7/2 4 13/2 7/2 4 13/2 7/2 4 13/2 7/2 4 13/2 7/2 4 13/2 7/2 4 13/2 3/2 4 9/2 3/2 4 9/2 3/2 4 9/2 3/2 4 9/2 3/2 4 9/2 3/2 4 9/2
|
||||
1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x
|
||||
Series[Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[0, k*x])/(k0^4*x^3), {x, 0, Infinity}, Assumptions -> n == 0 && q == 4 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0], {k, Infinity, 10}]
|
||||
|
||||
Simplify::time: Time spent on a transformation exceeded 300. seconds, and the transformation was aborted. Increasing the value of TimeConstraint option may improve the result of simplification.
|
||||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[0, k*x])/(k0^4*x^3), {x, 0, Infinity}, Assumptions -> n == 0 && q == 4 && κ == 5]
|
|
@ -0,0 +1,11 @@
|
|||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[1, k*x])/(k0^4*x^3), {x, 0, Infinity}, Assumptions -> n == 1 && q == 4 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0]
|
||||
Integrate((Power(E,I*k0*x)*Power(1 - Power(E,-(c*x)),5)*BesselJ(1,k*x))/(Power(k0,4)*Power(x,3)),List(x,0,DirectedInfinity(1)),Rule(Assumptions,n == 1 && q == 4 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0))
|
||||
|
||||
I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x 2 Pi -5 c x + I k0 x 2 Pi -4 c x + I k0 x 2 Pi -3 c x + I k0 x 2 Pi -2 c x + I k0 x 2 Pi -(c x) + I k0 x 2 Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi
|
||||
14783093325 E Cos[-- + k x] 14783093325 E Cos[-- + k x] 73915466625 E Cos[-- + k x] 73915466625 E Cos[-- + k x] 73915466625 E Cos[-- + k x] 73915466625 E Cos[-- + k x] 2837835 E Cos[-- + k x] 2837835 E Cos[-- + k x] 14189175 E Cos[-- + k x] 14189175 E Cos[-- + k x] 14189175 E Cos[-- + k x] 14189175 E Cos[-- + k x] 4725 E Cos[-- + k x] 4725 E Cos[-- + k x] 23625 E Cos[-- + k x] 23625 E Cos[-- + k x] 23625 E Cos[-- + k x] 23625 E Cos[-- + k x] 15 E Cos[-- + k x] 15 E Cos[-- + k x] 75 E Cos[-- + k x] 75 E Cos[-- + k x] 75 E Cos[-- + k x] 75 E Cos[-- + k x] E Sqrt[--] Cos[-- + k x] E Sqrt[--] Cos[-- + k x] 5 E Sqrt[--] Cos[-- + k x] 10 E Sqrt[--] Cos[-- + k x] 10 E Sqrt[--] Cos[-- + k x] 5 E Sqrt[--] Cos[-- + k x] 468131288625 E Sin[-- + k x] 468131288625 E Sin[-- + k x] 2340656443125 E Sin[-- + k x] 2340656443125 E Sin[-- + k x] 2340656443125 E Sin[-- + k x] 2340656443125 E Sin[-- + k x] 66891825 E Sin[-- + k x] 66891825 E Sin[-- + k x] 334459125 E Sin[-- + k x] 334459125 E Sin[-- + k x] 334459125 E Sin[-- + k x] 334459125 E Sin[-- + k x] 72765 E Sin[-- + k x] 72765 E Sin[-- + k x] 363825 E Sin[-- + k x] 363825 E Sin[-- + k x] 363825 E Sin[-- + k x] 363825 E Sin[-- + k x] 105 E Sin[-- + k x] 105 E Sin[-- + k x] 525 E Sin[-- + k x] 525 E Sin[-- + k x] 525 E Sin[-- + k x] 525 E Sin[-- + k x] 3 E Sin[-- + k x] 3 E Sin[-- + k x] 15 E Sin[-- + k x] 15 E Sin[-- + k x] 15 E Sin[-- + k x] 15 E Sin[-- + k x]
|
||||
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
|
||||
Integrate::idiv: Integral of ------------------------------------- - ------------------------------------------ + ------------------------------------------ - ------------------------------------------ + ------------------------------------------ - ------------------------------------------ - ---------------------------------- + -------------------------------------- - --------------------------------------- + --------------------------------------- - --------------------------------------- + --------------------------------------- + ------------------------------- - ----------------------------------- + ------------------------------------ - ------------------------------------ + ------------------------------------ - ------------------------------------ - ---------------------------- + --------------------------------- - --------------------------------- + --------------------------------- - --------------------------------- + --------------------------------- - ------------------------------ + --------------------------------------- - ----------------------------------------- + ------------------------------------------ - ------------------------------------------ + ----------------------------------------- + ------------------------------------- - ------------------------------------------- + -------------------------------------------- - -------------------------------------------- + -------------------------------------------- - -------------------------------------------- - ----------------------------------- + --------------------------------------- - ---------------------------------------- + ---------------------------------------- - ---------------------------------------- + ---------------------------------------- + --------------------------------- - ------------------------------------ + ------------------------------------- - ------------------------------------- + ------------------------------------- - ------------------------------------- - ----------------------------- + ---------------------------------- - ---------------------------------- + ---------------------------------- - ---------------------------------- + ---------------------------------- + -------------------------- - -------------------------------- + --------------------------------- - --------------------------------- + --------------------------------- - --------------------------------- does not converge on {0, Infinity}.
|
||||
17/2 4 23/2 17/2 4 23/2 17/2 4 23/2 17/2 4 23/2 17/2 4 23/2 17/2 4 23/2 13/2 4 19/2 13/2 4 19/2 13/2 4 19/2 13/2 4 19/2 13/2 4 19/2 13/2 4 19/2 9/2 4 15/2 9/2 4 15/2 9/2 4 15/2 9/2 4 15/2 9/2 4 15/2 9/2 4 15/2 5/2 4 11/2 5/2 4 11/2 5/2 4 11/2 5/2 4 11/2 5/2 4 11/2 5/2 4 11/2 4 7/2 4 7/2 4 7/2 4 7/2 4 7/2 4 7/2 19/2 4 25/2 19/2 4 25/2 19/2 4 25/2 19/2 4 25/2 19/2 4 25/2 19/2 4 25/2 15/2 4 21/2 15/2 4 21/2 15/2 4 21/2 15/2 4 21/2 15/2 4 21/2 15/2 4 21/2 11/2 4 17/2 11/2 4 17/2 11/2 4 17/2 11/2 4 17/2 11/2 4 17/2 11/2 4 17/2 7/2 4 13/2 7/2 4 13/2 7/2 4 13/2 7/2 4 13/2 7/2 4 13/2 7/2 4 13/2 3/2 4 9/2 3/2 4 9/2 3/2 4 9/2 3/2 4 9/2 3/2 4 9/2 3/2 4 9/2
|
||||
1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x
|
||||
Series[Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[1, k*x])/(k0^4*x^3), {x, 0, Infinity}, Assumptions -> n == 1 && q == 4 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0], {k, Infinity, 10}]
|
||||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[1, k*x])/(k0^4*x^3), {x, 0, Infinity}, Assumptions -> n == 1 && q == 4 && κ == 5]
|
|
@ -0,0 +1,11 @@
|
|||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[2, k*x])/(k0^4*x^3), {x, 0, Infinity}, Assumptions -> n == 2 && q == 4 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0]
|
||||
Integrate((Power(E,I*k0*x)*Power(1 - Power(E,-(c*x)),5)*BesselJ(2,k*x))/(Power(k0,4)*Power(x,3)),List(x,0,DirectedInfinity(1)),Rule(Assumptions,n == 2 && q == 4 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0))
|
||||
|
||||
I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x 2 Pi -5 c x + I k0 x 2 Pi -4 c x + I k0 x 2 Pi -3 c x + I k0 x 2 Pi -2 c x + I k0 x 2 Pi -(c x) + I k0 x 2 Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi
|
||||
-21606059475 E Cos[-- - k x] 21606059475 E Cos[-- - k x] 108030297375 E Cos[-- - k x] 108030297375 E Cos[-- - k x] 108030297375 E Cos[-- - k x] 108030297375 E Cos[-- - k x] 4729725 E Cos[-- - k x] 4729725 E Cos[-- - k x] 23648625 E Cos[-- - k x] 23648625 E Cos[-- - k x] 23648625 E Cos[-- - k x] 23648625 E Cos[-- - k x] 10395 E Cos[-- - k x] 10395 E Cos[-- - k x] 51975 E Cos[-- - k x] 51975 E Cos[-- - k x] 51975 E Cos[-- - k x] 51975 E Cos[-- - k x] 105 E Cos[-- - k x] 105 E Cos[-- - k x] 525 E Cos[-- - k x] 525 E Cos[-- - k x] 525 E Cos[-- - k x] 525 E Cos[-- - k x] E Sqrt[--] Cos[-- - k x] E Sqrt[--] Cos[-- - k x] 5 E Sqrt[--] Cos[-- - k x] 10 E Sqrt[--] Cos[-- - k x] 10 E Sqrt[--] Cos[-- - k x] 5 E Sqrt[--] Cos[-- - k x] 655383804075 E Sin[-- - k x] 655383804075 E Sin[-- - k x] 3276919020375 E Sin[-- - k x] 3276919020375 E Sin[-- - k x] 3276919020375 E Sin[-- - k x] 3276919020375 E Sin[-- - k x] 103378275 E Sin[-- - k x] 103378275 E Sin[-- - k x] 516891375 E Sin[-- - k x] 516891375 E Sin[-- - k x] 516891375 E Sin[-- - k x] 516891375 E Sin[-- - k x] 135135 E Sin[-- - k x] 135135 E Sin[-- - k x] 675675 E Sin[-- - k x] 675675 E Sin[-- - k x] 675675 E Sin[-- - k x] 675675 E Sin[-- - k x] 315 E Sin[-- - k x] 315 E Sin[-- - k x] 1575 E Sin[-- - k x] 1575 E Sin[-- - k x] 1575 E Sin[-- - k x] 1575 E Sin[-- - k x] 15 E Sin[-- - k x] 15 E Sin[-- - k x] 75 E Sin[-- - k x] 75 E Sin[-- - k x] 75 E Sin[-- - k x] 75 E Sin[-- - k x]
|
||||
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
|
||||
Integrate::idiv: Integral of ------------------------------------- + ------------------------------------------ - ------------------------------------------- + ------------------------------------------- - ------------------------------------------- + ------------------------------------------- + ---------------------------------- - -------------------------------------- + --------------------------------------- - --------------------------------------- + --------------------------------------- - --------------------------------------- - ------------------------------- + ------------------------------------ - ------------------------------------ + ------------------------------------ - ------------------------------------ + ------------------------------------ + ---------------------------- - ---------------------------------- + ---------------------------------- - ---------------------------------- + ---------------------------------- - ---------------------------------- - ------------------------------ + --------------------------------------- - ----------------------------------------- + ------------------------------------------ - ------------------------------------------ + ----------------------------------------- + ------------------------------------- - ------------------------------------------- + -------------------------------------------- - -------------------------------------------- + -------------------------------------------- - -------------------------------------------- - ----------------------------------- + ---------------------------------------- - ---------------------------------------- + ---------------------------------------- - ---------------------------------------- + ---------------------------------------- + --------------------------------- - ------------------------------------- + ------------------------------------- - ------------------------------------- + ------------------------------------- - ------------------------------------- - ----------------------------- + ---------------------------------- - ----------------------------------- + ----------------------------------- - ----------------------------------- + ----------------------------------- - -------------------------- + --------------------------------- - --------------------------------- + --------------------------------- - --------------------------------- + --------------------------------- does not converge on {0, Infinity}.
|
||||
17/2 4 23/2 17/2 4 23/2 17/2 4 23/2 17/2 4 23/2 17/2 4 23/2 17/2 4 23/2 13/2 4 19/2 13/2 4 19/2 13/2 4 19/2 13/2 4 19/2 13/2 4 19/2 13/2 4 19/2 9/2 4 15/2 9/2 4 15/2 9/2 4 15/2 9/2 4 15/2 9/2 4 15/2 9/2 4 15/2 5/2 4 11/2 5/2 4 11/2 5/2 4 11/2 5/2 4 11/2 5/2 4 11/2 5/2 4 11/2 4 7/2 4 7/2 4 7/2 4 7/2 4 7/2 4 7/2 19/2 4 25/2 19/2 4 25/2 19/2 4 25/2 19/2 4 25/2 19/2 4 25/2 19/2 4 25/2 15/2 4 21/2 15/2 4 21/2 15/2 4 21/2 15/2 4 21/2 15/2 4 21/2 15/2 4 21/2 11/2 4 17/2 11/2 4 17/2 11/2 4 17/2 11/2 4 17/2 11/2 4 17/2 11/2 4 17/2 7/2 4 13/2 7/2 4 13/2 7/2 4 13/2 7/2 4 13/2 7/2 4 13/2 7/2 4 13/2 3/2 4 9/2 3/2 4 9/2 3/2 4 9/2 3/2 4 9/2 3/2 4 9/2 3/2 4 9/2
|
||||
1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x
|
||||
Series[Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[2, k*x])/(k0^4*x^3), {x, 0, Infinity}, Assumptions -> n == 2 && q == 4 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0], {k, Infinity, 10}]
|
||||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[2, k*x])/(k0^4*x^3), {x, 0, Infinity}, Assumptions -> n == 2 && q == 4 && κ == 5]
|
|
@ -0,0 +1,4 @@
|
|||
(-(k^4*(-15 + 8*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 4*k^2*(-5 + 4*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 8*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5)/(24*k^3) + (k^4*(-15 + 8*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 4*k^2*(-5 + 4*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 8*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5)/(12*k^3) - (k^4*(-15 + 8*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 4*k^2*(-5 + 4*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 8*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5)/(12*k^3) + (k^4*(-15 + 8*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 4*k^2*(-5 + 4*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 8*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5)/(24*k^3) - (k^4*(-15 + 8*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 4*k^2*(-5 + 4*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 8*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5)/(120*k^3) + (I/120*(k^4*(15*k0 - 8*Sqrt[-k^2 + k0^2]) + 8*k0^4*(k0 - Sqrt[-k^2 + k0^2]) + 4*k^2*k0^2*(-5*k0 + 4*Sqrt[-k^2 + k0^2])))/k^3)/k0^4
|
||||
(-(Power(k,4)*(-15 + 8*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*(c - Complex(0,1)*k0) + 4*Power(k,2)*(-5 + 4*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,3) + 8*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,5))/(24.*Power(k,3)) + (Power(k,4)*(-15 + 8*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*(2*c - Complex(0,1)*k0) + 4*Power(k,2)*(-5 + 4*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,3) + 8*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,5))/(12.*Power(k,3)) - (Power(k,4)*(-15 + 8*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*(3*c - Complex(0,1)*k0) + 4*Power(k,2)*(-5 + 4*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,3) + 8*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,5))/(12.*Power(k,3)) + (Power(k,4)*(-15 + 8*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*(4*c - Complex(0,1)*k0) + 4*Power(k,2)*(-5 + 4*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,3) + 8*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,5))/(24.*Power(k,3)) - (Power(k,4)*(-15 + 8*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*(5*c - Complex(0,1)*k0) + 4*Power(k,2)*(-5 + 4*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,3) + 8*(-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,5))/(120.*Power(k,3)) + (Complex(0,0.008333333333333333)*(Power(k,4)*(15*k0 - 8*Sqrt(-Power(k,2) + Power(k0,2))) + 8*Power(k0,4)*(k0 - Sqrt(-Power(k,2) + Power(k0,2))) + 4*Power(k,2)*Power(k0,2)*(-5*k0 + 4*Sqrt(-Power(k,2) + Power(k0,2)))))/Power(k,3))/Power(k0,4)
|
||||
SeriesData[k, Infinity, {(8*c^5)/k0^4, (-75*c^6)/(2*k0^4) + ((15*I)*c^5)/k0^3, 0, (35*(75*c^8 - (80*I)*c^7*k0 - 30*c^6*k0^2 + (4*I)*c^5*k0^3))/(8*k0^4), 0, (-63*(2025*c^10 - (3310*I)*c^9*k0 - 2250*c^8*k0^2 + (800*I)*c^7*k0^3 + 150*c^6*k0^4 - (12*I)*c^5*k0^5))/(32*k0^4), 0, (165*(20900*c^12 - (44860*I)*c^11*k0 - 42525*c^10*k0^2 + (23170*I)*c^9*k0^3 + 7875*c^8*k0^4 - (1680*I)*c^7*k0^5 - 210*c^6*k0^6 + (12*I)*c^5*k0^7))/(64*k0^4)}, 3, 11, 1]
|
||||
-(5*(k^4*(-15 + 8*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 4*k^2*(-5 + 4*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 8*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5) - 10*(k^4*(-15 + 8*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 4*k^2*(-5 + 4*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 8*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5) + 10*(k^4*(-15 + 8*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 4*k^2*(-5 + 4*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 8*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5) - 5*(k^4*(-15 + 8*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 4*k^2*(-5 + 4*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 8*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5) + k^4*(-15 + 8*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 4*k^2*(-5 + 4*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 8*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5 - I*(k^4*(15*k0 - 8*Sqrt[-k^2 + k0^2]) + 8*k0^4*(k0 - Sqrt[-k^2 + k0^2]) + 4*k^2*k0^2*(-5*k0 + 4*Sqrt[-k^2 + k0^2])))/(120*k^3*k0^4)
|
|
@ -0,0 +1,4 @@
|
|||
(-(5*k^6 + 2*k^4*(15 - 8*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 8*k^2*(5 - 4*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 - 16*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6)/(48*k^4) + (5*k^6 + 2*k^4*(15 - 8*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 8*k^2*(5 - 4*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 - 16*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6)/(24*k^4) - (5*k^6 + 2*k^4*(15 - 8*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 8*k^2*(5 - 4*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 - 16*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6)/(24*k^4) + (5*k^6 + 2*k^4*(15 - 8*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 8*k^2*(5 - 4*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 - 16*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6)/(48*k^4) - (5*k^6 + 2*k^4*(15 - 8*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 8*k^2*(5 - 4*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 - 16*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^6)/(240*k^4) + (5*k^6 + 16*k0^5*(-k0 + Sqrt[-k^2 + k0^2]) - 8*k^2*k0^3*(-5*k0 + 4*Sqrt[-k^2 + k0^2]) + 2*k^4*k0*(-15*k0 + 8*Sqrt[-k^2 + k0^2]))/(240*k^4))/k0^4
|
||||
(-(5*Power(k,6) + 2*Power(k,4)*(15 - 8*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,2) + 8*Power(k,2)*(5 - 4*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,4) - 16*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,6))/(48.*Power(k,4)) + (5*Power(k,6) + 2*Power(k,4)*(15 - 8*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,2) + 8*Power(k,2)*(5 - 4*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,4) - 16*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,6))/(24.*Power(k,4)) - (5*Power(k,6) + 2*Power(k,4)*(15 - 8*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,2) + 8*Power(k,2)*(5 - 4*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,4) - 16*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,6))/(24.*Power(k,4)) + (5*Power(k,6) + 2*Power(k,4)*(15 - 8*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,2) + 8*Power(k,2)*(5 - 4*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,4) - 16*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,6))/(48.*Power(k,4)) - (5*Power(k,6) + 2*Power(k,4)*(15 - 8*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,2) + 8*Power(k,2)*(5 - 4*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,4) - 16*(-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,6))/(240.*Power(k,4)) + (5*Power(k,6) + 16*Power(k0,5)*(-k0 + Sqrt(-Power(k,2) + Power(k0,2))) - 8*Power(k,2)*Power(k0,3)*(-5*k0 + 4*Sqrt(-Power(k,2) + Power(k0,2))) + 2*Power(k,4)*k0*(-15*k0 + 8*Sqrt(-Power(k,2) + Power(k0,2))))/(240.*Power(k,4)))/Power(k0,4)
|
||||
SeriesData[k, Infinity, {(15*c^5)/k0^4, (-120*c^6)/k0^4 + ((48*I)*c^5)/k0^3, (35*(20*c^7 - (15*I)*c^6*k0 - 3*c^5*k0^2))/(2*k0^4), 0, (-105*(331*c^9 - (450*I)*c^8*k0 - 240*c^7*k0^2 + (60*I)*c^6*k0^3 + 6*c^5*k0^4))/(16*k0^4), 0, (33*(22430*c^11 - (42525*I)*c^10*k0 - 34755*c^9*k0^2 + (15750*I)*c^8*k0^3 + 4200*c^7*k0^4 - (630*I)*c^6*k0^5 - 42*c^5*k0^6))/(32*k0^4)}, 3, 11, 1]
|
||||
(5*k^4*(-15 + 8*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 20*k^2*(-5 + 4*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 + 40*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6 + 10*k^4*(15 - 8*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 40*k^2*(5 - 4*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 - 80*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6 + 10*k^4*(-15 + 8*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 40*k^2*(-5 + 4*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 + 80*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6 + 5*k^4*(15 - 8*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 20*k^2*(5 - 4*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 - 40*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6 + k^4*(-15 + 8*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 4*k^2*(-5 + 4*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 + 8*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^6 + 8*k0^5*(-k0 + Sqrt[-k^2 + k0^2]) - 4*k^2*k0^3*(-5*k0 + 4*Sqrt[-k^2 + k0^2]) + k^4*k0*(-15*k0 + 8*Sqrt[-k^2 + k0^2]))/(120*k^4*k0^4)
|
|
@ -0,0 +1,4 @@
|
|||
(-(k^6*(-35 + 8*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^7)/(168*k^5) + (k^6*(-35 + 8*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^7)/(84*k^5) - (k^6*(-35 + 8*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^7)/(84*k^5) + (k^6*(-35 + 8*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^7)/(168*k^5) - (k^6*(-35 + 8*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^7)/(840*k^5) + (I/840*(k^6*(35*k0 - 8*Sqrt[-k^2 + k0^2]) + 64*k0^6*(-k0 + Sqrt[-k^2 + k0^2]) + 20*k^4*k0^2*(-7*k0 + 4*Sqrt[-k^2 + k0^2]) - 8*k^2*k0^4*(-21*k0 + 17*Sqrt[-k^2 + k0^2])))/k^5)/k0^4
|
||||
(-(Power(k,6)*(-35 + 8*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*(c - Complex(0,1)*k0) + 20*Power(k,4)*(-7 + 4*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,3) + 8*Power(k,2)*(-21 + 17*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,5) + 64*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,7))/(168.*Power(k,5)) + (Power(k,6)*(-35 + 8*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*(2*c - Complex(0,1)*k0) + 20*Power(k,4)*(-7 + 4*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,3) + 8*Power(k,2)*(-21 + 17*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,5) + 64*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,7))/(84.*Power(k,5)) - (Power(k,6)*(-35 + 8*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*(3*c - Complex(0,1)*k0) + 20*Power(k,4)*(-7 + 4*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,3) + 8*Power(k,2)*(-21 + 17*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,5) + 64*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,7))/(84.*Power(k,5)) + (Power(k,6)*(-35 + 8*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*(4*c - Complex(0,1)*k0) + 20*Power(k,4)*(-7 + 4*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,3) + 8*Power(k,2)*(-21 + 17*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,5) + 64*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,7))/(168.*Power(k,5)) - (Power(k,6)*(-35 + 8*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*(5*c - Complex(0,1)*k0) + 20*Power(k,4)*(-7 + 4*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,3) + 8*Power(k,2)*(-21 + 17*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,5) + 64*(-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,7))/(840.*Power(k,5)) + (Complex(0,0.0011904761904761906)*(Power(k,6)*(35*k0 - 8*Sqrt(-Power(k,2) + Power(k0,2))) + 64*Power(k0,6)*(-k0 + Sqrt(-Power(k,2) + Power(k0,2))) + 20*Power(k,4)*Power(k0,2)*(-7*k0 + 4*Sqrt(-Power(k,2) + Power(k0,2))) - 8*Power(k,2)*Power(k0,4)*(-21*k0 + 17*Sqrt(-Power(k,2) + Power(k0,2)))))/Power(k,5))/Power(k0,4)
|
||||
SeriesData[k, Infinity, {(24*c^5)/k0^4, (-525*c^6)/(2*k0^4) + ((105*I)*c^5)/k0^3, (1280*c^7)/k0^4 - ((960*I)*c^6)/k0^3 - (192*c^5)/k0^2, (-315*(75*c^8 - (80*I)*c^7*k0 - 30*c^6*k0^2 + (4*I)*c^5*k0^3))/(8*k0^4), 0, (231*(2025*c^10 - (3310*I)*c^9*k0 - 2250*c^8*k0^2 + (800*I)*c^7*k0^3 + 150*c^6*k0^4 - (12*I)*c^5*k0^5))/(32*k0^4), 0, (-429*(20900*c^12 - (44860*I)*c^11*k0 - 42525*c^10*k0^2 + (23170*I)*c^9*k0^3 + 7875*c^8*k0^4 - (1680*I)*c^7*k0^5 - 210*c^6*k0^6 + (12*I)*c^5*k0^7))/(64*k0^4)}, 3, 11, 1]
|
||||
-(5*(k^6*(-35 + 8*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^7) - 10*(k^6*(-35 + 8*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^7) + 10*(k^6*(-35 + 8*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^7) - 5*(k^6*(-35 + 8*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^7) + k^6*(-35 + 8*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^7 - I*(k^6*(35*k0 - 8*Sqrt[-k^2 + k0^2]) + 64*k0^6*(-k0 + Sqrt[-k^2 + k0^2]) + 20*k^4*k0^2*(-7*k0 + 4*Sqrt[-k^2 + k0^2]) - 8*k^2*k0^4*(-21*k0 + 17*Sqrt[-k^2 + k0^2])))/(840*k^5*k0^4)
|
|
@ -0,0 +1,13 @@
|
|||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[0, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 0 && q == 5 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0]
|
||||
Integrate((Power(E,I*k0*x)*Power(1 - Power(E,-(c*x)),5)*BesselJ(0,k*x))/(Power(k0,5)*Power(x,4)),List(x,0,DirectedInfinity(1)),Rule(Assumptions,n == 0 && q == 5 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0))
|
||||
|
||||
I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x 2 Pi -5 c x + I k0 x 2 Pi -4 c x + I k0 x 2 Pi -3 c x + I k0 x 2 Pi -2 c x + I k0 x 2 Pi -(c x) + I k0 x 2 Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi
|
||||
13043905875 E Cos[-- - k x] 13043905875 E Cos[-- - k x] 65219529375 E Cos[-- - k x] 65219529375 E Cos[-- - k x] 65219529375 E Cos[-- - k x] 65219529375 E Cos[-- - k x] 2401245 E Cos[-- - k x] 2401245 E Cos[-- - k x] 12006225 E Cos[-- - k x] 12006225 E Cos[-- - k x] 12006225 E Cos[-- - k x] 12006225 E Cos[-- - k x] 3675 E Cos[-- - k x] 3675 E Cos[-- - k x] 18375 E Cos[-- - k x] 18375 E Cos[-- - k x] 18375 E Cos[-- - k x] 18375 E Cos[-- - k x] 9 E Cos[-- - k x] 9 E Cos[-- - k x] 45 E Cos[-- - k x] 45 E Cos[-- - k x] 45 E Cos[-- - k x] 45 E Cos[-- - k x] E Sqrt[--] Cos[-- - k x] E Sqrt[--] Cos[-- - k x] 5 E Sqrt[--] Cos[-- - k x] 10 E Sqrt[--] Cos[-- - k x] 10 E Sqrt[--] Cos[-- - k x] 5 E Sqrt[--] Cos[-- - k x] 418854310875 E Sin[-- - k x] 418854310875 E Sin[-- - k x] 2094271554375 E Sin[-- - k x] 2094271554375 E Sin[-- - k x] 2094271554375 E Sin[-- - k x] 2094271554375 E Sin[-- - k x] 57972915 E Sin[-- - k x] 57972915 E Sin[-- - k x] 289864575 E Sin[-- - k x] 289864575 E Sin[-- - k x] 289864575 E Sin[-- - k x] 289864575 E Sin[-- - k x] 59535 E Sin[-- - k x] 59535 E Sin[-- - k x] 297675 E Sin[-- - k x] 297675 E Sin[-- - k x] 297675 E Sin[-- - k x] 297675 E Sin[-- - k x] 75 E Sin[-- - k x] 75 E Sin[-- - k x] 375 E Sin[-- - k x] 375 E Sin[-- - k x] 375 E Sin[-- - k x] 375 E Sin[-- - k x] E Sin[-- - k x] E Sin[-- - k x] 5 E Sin[-- - k x] 5 E Sin[-- - k x] 5 E Sin[-- - k x] 5 E Sin[-- - k x]
|
||||
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
|
||||
Integrate::idiv: Integral of ------------------------------------- - ------------------------------------------ + ------------------------------------------ - ------------------------------------------ + ------------------------------------------ - ------------------------------------------ - ---------------------------------- + -------------------------------------- - --------------------------------------- + --------------------------------------- - --------------------------------------- + --------------------------------------- + ------------------------------- - ----------------------------------- + ------------------------------------ - ------------------------------------ + ------------------------------------ - ------------------------------------ - ---------------------------- + -------------------------------- - --------------------------------- + --------------------------------- - --------------------------------- + --------------------------------- + ------------------------------ - --------------------------------------- + ----------------------------------------- - ------------------------------------------ + ------------------------------------------ - ----------------------------------------- - ------------------------------------- + ------------------------------------------- - -------------------------------------------- + -------------------------------------------- - -------------------------------------------- + -------------------------------------------- + ----------------------------------- - --------------------------------------- + ---------------------------------------- - ---------------------------------------- + ---------------------------------------- - ---------------------------------------- - --------------------------------- + ------------------------------------ - ------------------------------------- + ------------------------------------- - ------------------------------------- + ------------------------------------- + ----------------------------- - --------------------------------- + ---------------------------------- - ---------------------------------- + ---------------------------------- - ---------------------------------- - --------------------------- + ------------------------------ - -------------------------------- + -------------------------------- - -------------------------------- + -------------------------------- does not converge on {0, Infinity}.
|
||||
17/2 5 25/2 17/2 5 25/2 17/2 5 25/2 17/2 5 25/2 17/2 5 25/2 17/2 5 25/2 13/2 5 21/2 13/2 5 21/2 13/2 5 21/2 13/2 5 21/2 13/2 5 21/2 13/2 5 21/2 9/2 5 17/2 9/2 5 17/2 9/2 5 17/2 9/2 5 17/2 9/2 5 17/2 9/2 5 17/2 5/2 5 13/2 5/2 5 13/2 5/2 5 13/2 5/2 5 13/2 5/2 5 13/2 5/2 5 13/2 5 9/2 5 9/2 5 9/2 5 9/2 5 9/2 5 9/2 19/2 5 27/2 19/2 5 27/2 19/2 5 27/2 19/2 5 27/2 19/2 5 27/2 19/2 5 27/2 15/2 5 23/2 15/2 5 23/2 15/2 5 23/2 15/2 5 23/2 15/2 5 23/2 15/2 5 23/2 11/2 5 19/2 11/2 5 19/2 11/2 5 19/2 11/2 5 19/2 11/2 5 19/2 11/2 5 19/2 7/2 5 15/2 7/2 5 15/2 7/2 5 15/2 7/2 5 15/2 7/2 5 15/2 7/2 5 15/2 3/2 5 11/2 3/2 5 11/2 3/2 5 11/2 3/2 5 11/2 3/2 5 11/2 3/2 5 11/2
|
||||
1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x
|
||||
Series[Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[0, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 0 && q == 5 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0], {k, Infinity, 10}]
|
||||
|
||||
Simplify::time: Time spent on a transformation exceeded 300. seconds, and the transformation was aborted. Increasing the value of TimeConstraint option may improve the result of simplification.
|
||||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[0, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 0 && q == 5 && κ == 5]
|
|
@ -0,0 +1,13 @@
|
|||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[1, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 1 && q == 5 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0]
|
||||
Integrate((Power(E,I*k0*x)*Power(1 - Power(E,-(c*x)),5)*BesselJ(1,k*x))/(Power(k0,5)*Power(x,4)),List(x,0,DirectedInfinity(1)),Rule(Assumptions,n == 1 && q == 5 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0))
|
||||
|
||||
I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x 2 Pi -5 c x + I k0 x 2 Pi -4 c x + I k0 x 2 Pi -3 c x + I k0 x 2 Pi -2 c x + I k0 x 2 Pi -(c x) + I k0 x 2 Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi
|
||||
14783093325 E Cos[-- + k x] 14783093325 E Cos[-- + k x] 73915466625 E Cos[-- + k x] 73915466625 E Cos[-- + k x] 73915466625 E Cos[-- + k x] 73915466625 E Cos[-- + k x] 2837835 E Cos[-- + k x] 2837835 E Cos[-- + k x] 14189175 E Cos[-- + k x] 14189175 E Cos[-- + k x] 14189175 E Cos[-- + k x] 14189175 E Cos[-- + k x] 4725 E Cos[-- + k x] 4725 E Cos[-- + k x] 23625 E Cos[-- + k x] 23625 E Cos[-- + k x] 23625 E Cos[-- + k x] 23625 E Cos[-- + k x] 15 E Cos[-- + k x] 15 E Cos[-- + k x] 75 E Cos[-- + k x] 75 E Cos[-- + k x] 75 E Cos[-- + k x] 75 E Cos[-- + k x] E Sqrt[--] Cos[-- + k x] E Sqrt[--] Cos[-- + k x] 5 E Sqrt[--] Cos[-- + k x] 10 E Sqrt[--] Cos[-- + k x] 10 E Sqrt[--] Cos[-- + k x] 5 E Sqrt[--] Cos[-- + k x] 468131288625 E Sin[-- + k x] 468131288625 E Sin[-- + k x] 2340656443125 E Sin[-- + k x] 2340656443125 E Sin[-- + k x] 2340656443125 E Sin[-- + k x] 2340656443125 E Sin[-- + k x] 66891825 E Sin[-- + k x] 66891825 E Sin[-- + k x] 334459125 E Sin[-- + k x] 334459125 E Sin[-- + k x] 334459125 E Sin[-- + k x] 334459125 E Sin[-- + k x] 72765 E Sin[-- + k x] 72765 E Sin[-- + k x] 363825 E Sin[-- + k x] 363825 E Sin[-- + k x] 363825 E Sin[-- + k x] 363825 E Sin[-- + k x] 105 E Sin[-- + k x] 105 E Sin[-- + k x] 525 E Sin[-- + k x] 525 E Sin[-- + k x] 525 E Sin[-- + k x] 525 E Sin[-- + k x] 3 E Sin[-- + k x] 3 E Sin[-- + k x] 15 E Sin[-- + k x] 15 E Sin[-- + k x] 15 E Sin[-- + k x] 15 E Sin[-- + k x]
|
||||
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
|
||||
Integrate::idiv: Integral of ------------------------------------- - ------------------------------------------ + ------------------------------------------ - ------------------------------------------ + ------------------------------------------ - ------------------------------------------ - ---------------------------------- + -------------------------------------- - --------------------------------------- + --------------------------------------- - --------------------------------------- + --------------------------------------- + ------------------------------- - ----------------------------------- + ------------------------------------ - ------------------------------------ + ------------------------------------ - ------------------------------------ - ---------------------------- + --------------------------------- - --------------------------------- + --------------------------------- - --------------------------------- + --------------------------------- - ------------------------------ + --------------------------------------- - ----------------------------------------- + ------------------------------------------ - ------------------------------------------ + ----------------------------------------- + ------------------------------------- - ------------------------------------------- + -------------------------------------------- - -------------------------------------------- + -------------------------------------------- - -------------------------------------------- - ----------------------------------- + --------------------------------------- - ---------------------------------------- + ---------------------------------------- - ---------------------------------------- + ---------------------------------------- + --------------------------------- - ------------------------------------ + ------------------------------------- - ------------------------------------- + ------------------------------------- - ------------------------------------- - ----------------------------- + ---------------------------------- - ---------------------------------- + ---------------------------------- - ---------------------------------- + ---------------------------------- + --------------------------- - -------------------------------- + --------------------------------- - --------------------------------- + --------------------------------- - --------------------------------- does not converge on {0, Infinity}.
|
||||
17/2 5 25/2 17/2 5 25/2 17/2 5 25/2 17/2 5 25/2 17/2 5 25/2 17/2 5 25/2 13/2 5 21/2 13/2 5 21/2 13/2 5 21/2 13/2 5 21/2 13/2 5 21/2 13/2 5 21/2 9/2 5 17/2 9/2 5 17/2 9/2 5 17/2 9/2 5 17/2 9/2 5 17/2 9/2 5 17/2 5/2 5 13/2 5/2 5 13/2 5/2 5 13/2 5/2 5 13/2 5/2 5 13/2 5/2 5 13/2 5 9/2 5 9/2 5 9/2 5 9/2 5 9/2 5 9/2 19/2 5 27/2 19/2 5 27/2 19/2 5 27/2 19/2 5 27/2 19/2 5 27/2 19/2 5 27/2 15/2 5 23/2 15/2 5 23/2 15/2 5 23/2 15/2 5 23/2 15/2 5 23/2 15/2 5 23/2 11/2 5 19/2 11/2 5 19/2 11/2 5 19/2 11/2 5 19/2 11/2 5 19/2 11/2 5 19/2 7/2 5 15/2 7/2 5 15/2 7/2 5 15/2 7/2 5 15/2 7/2 5 15/2 7/2 5 15/2 3/2 5 11/2 3/2 5 11/2 3/2 5 11/2 3/2 5 11/2 3/2 5 11/2 3/2 5 11/2
|
||||
1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x
|
||||
Series[Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[1, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 1 && q == 5 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0], {k, Infinity, 10}]
|
||||
|
||||
Simplify::time: Time spent on a transformation exceeded 300. seconds, and the transformation was aborted. Increasing the value of TimeConstraint option may improve the result of simplification.
|
||||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[1, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 1 && q == 5 && κ == 5]
|
|
@ -0,0 +1,11 @@
|
|||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[2, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 2 && q == 5 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0]
|
||||
Integrate((Power(E,I*k0*x)*Power(1 - Power(E,-(c*x)),5)*BesselJ(2,k*x))/(Power(k0,5)*Power(x,4)),List(x,0,DirectedInfinity(1)),Rule(Assumptions,n == 2 && q == 5 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0))
|
||||
|
||||
I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x 2 Pi -5 c x + I k0 x 2 Pi -4 c x + I k0 x 2 Pi -3 c x + I k0 x 2 Pi -2 c x + I k0 x 2 Pi -(c x) + I k0 x 2 Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi
|
||||
-21606059475 E Cos[-- - k x] 21606059475 E Cos[-- - k x] 108030297375 E Cos[-- - k x] 108030297375 E Cos[-- - k x] 108030297375 E Cos[-- - k x] 108030297375 E Cos[-- - k x] 4729725 E Cos[-- - k x] 4729725 E Cos[-- - k x] 23648625 E Cos[-- - k x] 23648625 E Cos[-- - k x] 23648625 E Cos[-- - k x] 23648625 E Cos[-- - k x] 10395 E Cos[-- - k x] 10395 E Cos[-- - k x] 51975 E Cos[-- - k x] 51975 E Cos[-- - k x] 51975 E Cos[-- - k x] 51975 E Cos[-- - k x] 105 E Cos[-- - k x] 105 E Cos[-- - k x] 525 E Cos[-- - k x] 525 E Cos[-- - k x] 525 E Cos[-- - k x] 525 E Cos[-- - k x] E Sqrt[--] Cos[-- - k x] E Sqrt[--] Cos[-- - k x] 5 E Sqrt[--] Cos[-- - k x] 10 E Sqrt[--] Cos[-- - k x] 10 E Sqrt[--] Cos[-- - k x] 5 E Sqrt[--] Cos[-- - k x] 655383804075 E Sin[-- - k x] 655383804075 E Sin[-- - k x] 3276919020375 E Sin[-- - k x] 3276919020375 E Sin[-- - k x] 3276919020375 E Sin[-- - k x] 3276919020375 E Sin[-- - k x] 103378275 E Sin[-- - k x] 103378275 E Sin[-- - k x] 516891375 E Sin[-- - k x] 516891375 E Sin[-- - k x] 516891375 E Sin[-- - k x] 516891375 E Sin[-- - k x] 135135 E Sin[-- - k x] 135135 E Sin[-- - k x] 675675 E Sin[-- - k x] 675675 E Sin[-- - k x] 675675 E Sin[-- - k x] 675675 E Sin[-- - k x] 315 E Sin[-- - k x] 315 E Sin[-- - k x] 1575 E Sin[-- - k x] 1575 E Sin[-- - k x] 1575 E Sin[-- - k x] 1575 E Sin[-- - k x] 15 E Sin[-- - k x] 15 E Sin[-- - k x] 75 E Sin[-- - k x] 75 E Sin[-- - k x] 75 E Sin[-- - k x] 75 E Sin[-- - k x]
|
||||
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
|
||||
Integrate::idiv: Integral of ------------------------------------- + ------------------------------------------ - ------------------------------------------- + ------------------------------------------- - ------------------------------------------- + ------------------------------------------- + ---------------------------------- - -------------------------------------- + --------------------------------------- - --------------------------------------- + --------------------------------------- - --------------------------------------- - ------------------------------- + ------------------------------------ - ------------------------------------ + ------------------------------------ - ------------------------------------ + ------------------------------------ + ---------------------------- - ---------------------------------- + ---------------------------------- - ---------------------------------- + ---------------------------------- - ---------------------------------- - ------------------------------ + --------------------------------------- - ----------------------------------------- + ------------------------------------------ - ------------------------------------------ + ----------------------------------------- + ------------------------------------- - ------------------------------------------- + -------------------------------------------- - -------------------------------------------- + -------------------------------------------- - -------------------------------------------- - ----------------------------------- + ---------------------------------------- - ---------------------------------------- + ---------------------------------------- - ---------------------------------------- + ---------------------------------------- + --------------------------------- - ------------------------------------- + ------------------------------------- - ------------------------------------- + ------------------------------------- - ------------------------------------- - ----------------------------- + ---------------------------------- - ----------------------------------- + ----------------------------------- - ----------------------------------- + ----------------------------------- - --------------------------- + --------------------------------- - --------------------------------- + --------------------------------- - --------------------------------- + --------------------------------- does not converge on {0, Infinity}.
|
||||
17/2 5 25/2 17/2 5 25/2 17/2 5 25/2 17/2 5 25/2 17/2 5 25/2 17/2 5 25/2 13/2 5 21/2 13/2 5 21/2 13/2 5 21/2 13/2 5 21/2 13/2 5 21/2 13/2 5 21/2 9/2 5 17/2 9/2 5 17/2 9/2 5 17/2 9/2 5 17/2 9/2 5 17/2 9/2 5 17/2 5/2 5 13/2 5/2 5 13/2 5/2 5 13/2 5/2 5 13/2 5/2 5 13/2 5/2 5 13/2 5 9/2 5 9/2 5 9/2 5 9/2 5 9/2 5 9/2 19/2 5 27/2 19/2 5 27/2 19/2 5 27/2 19/2 5 27/2 19/2 5 27/2 19/2 5 27/2 15/2 5 23/2 15/2 5 23/2 15/2 5 23/2 15/2 5 23/2 15/2 5 23/2 15/2 5 23/2 11/2 5 19/2 11/2 5 19/2 11/2 5 19/2 11/2 5 19/2 11/2 5 19/2 11/2 5 19/2 7/2 5 15/2 7/2 5 15/2 7/2 5 15/2 7/2 5 15/2 7/2 5 15/2 7/2 5 15/2 3/2 5 11/2 3/2 5 11/2 3/2 5 11/2 3/2 5 11/2 3/2 5 11/2 3/2 5 11/2
|
||||
1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x
|
||||
Series[Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[2, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 2 && q == 5 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0], {k, Infinity, 10}]
|
||||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[2, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 2 && q == 5 && κ == 5]
|
|
@ -0,0 +1,13 @@
|
|||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[3, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 3 && q == 5 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0]
|
||||
Integrate((Power(E,I*k0*x)*Power(1 - Power(E,-(c*x)),5)*BesselJ(3,k*x))/(Power(k0,5)*Power(x,4)),List(x,0,DirectedInfinity(1)),Rule(Assumptions,n == 3 && q == 5 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0))
|
||||
|
||||
I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x 2 Pi -5 c x + I k0 x 2 Pi -4 c x + I k0 x 2 Pi -3 c x + I k0 x 2 Pi -2 c x + I k0 x 2 Pi -(c x) + I k0 x 2 Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi I k0 x Pi -5 c x + I k0 x Pi -4 c x + I k0 x Pi -3 c x + I k0 x Pi -2 c x + I k0 x Pi -(c x) + I k0 x Pi
|
||||
-41247931725 E Cos[-- + k x] 41247931725 E Cos[-- + k x] 206239658625 E Cos[-- + k x] 206239658625 E Cos[-- + k x] 206239658625 E Cos[-- + k x] 206239658625 E Cos[-- + k x] 11486475 E Cos[-- + k x] 11486475 E Cos[-- + k x] 57432375 E Cos[-- + k x] 57432375 E Cos[-- + k x] 57432375 E Cos[-- + k x] 57432375 E Cos[-- + k x] 45045 E Cos[-- + k x] 45045 E Cos[-- + k x] 225225 E Cos[-- + k x] 225225 E Cos[-- + k x] 225225 E Cos[-- + k x] 225225 E Cos[-- + k x] 945 E Cos[-- + k x] 945 E Cos[-- + k x] 4725 E Cos[-- + k x] 4725 E Cos[-- + k x] 4725 E Cos[-- + k x] 4725 E Cos[-- + k x] E Sqrt[--] Cos[-- + k x] E Sqrt[--] Cos[-- + k x] 5 E Sqrt[--] Cos[-- + k x] 10 E Sqrt[--] Cos[-- + k x] 10 E Sqrt[--] Cos[-- + k x] 5 E Sqrt[--] Cos[-- + k x] 1159525191825 E Sin[-- + k x] 1159525191825 E Sin[-- + k x] 5797625959125 E Sin[-- + k x] 5797625959125 E Sin[-- + k x] 5797625959125 E Sin[-- + k x] 5797625959125 E Sin[-- + k x] 218243025 E Sin[-- + k x] 218243025 E Sin[-- + k x] 1091215125 E Sin[-- + k x] 1091215125 E Sin[-- + k x] 1091215125 E Sin[-- + k x] 1091215125 E Sin[-- + k x] 405405 E Sin[-- + k x] 405405 E Sin[-- + k x] 2027025 E Sin[-- + k x] 2027025 E Sin[-- + k x] 2027025 E Sin[-- + k x] 2027025 E Sin[-- + k x] 3465 E Sin[-- + k x] 3465 E Sin[-- + k x] 17325 E Sin[-- + k x] 17325 E Sin[-- + k x] 17325 E Sin[-- + k x] 17325 E Sin[-- + k x] 35 E Sin[-- + k x] 35 E Sin[-- + k x] 175 E Sin[-- + k x] 175 E Sin[-- + k x] 175 E Sin[-- + k x] 175 E Sin[-- + k x]
|
||||
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 Pi 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
|
||||
Integrate::idiv: Integral of ------------------------------------- + ------------------------------------------ - ------------------------------------------- + ------------------------------------------- - ------------------------------------------- + ------------------------------------------- + ---------------------------------- - --------------------------------------- + --------------------------------------- - --------------------------------------- + --------------------------------------- - --------------------------------------- - ------------------------------- + ------------------------------------ - ------------------------------------- + ------------------------------------- - ------------------------------------- + ------------------------------------- - ---------------------------- + ---------------------------------- - ----------------------------------- + ----------------------------------- - ----------------------------------- + ----------------------------------- + ------------------------------ - --------------------------------------- + ----------------------------------------- - ------------------------------------------ + ------------------------------------------ - ----------------------------------------- - ------------------------------------- + -------------------------------------------- - -------------------------------------------- + -------------------------------------------- - -------------------------------------------- + -------------------------------------------- + ----------------------------------- - ---------------------------------------- + ----------------------------------------- - ----------------------------------------- + ----------------------------------------- - ----------------------------------------- - --------------------------------- + ------------------------------------- - -------------------------------------- + -------------------------------------- - -------------------------------------- + -------------------------------------- + ----------------------------- - ----------------------------------- + ------------------------------------ - ------------------------------------ + ------------------------------------ - ------------------------------------ - --------------------------- + --------------------------------- - ---------------------------------- + ---------------------------------- - ---------------------------------- + ---------------------------------- does not converge on {0, Infinity}.
|
||||
17/2 5 25/2 17/2 5 25/2 17/2 5 25/2 17/2 5 25/2 17/2 5 25/2 17/2 5 25/2 13/2 5 21/2 13/2 5 21/2 13/2 5 21/2 13/2 5 21/2 13/2 5 21/2 13/2 5 21/2 9/2 5 17/2 9/2 5 17/2 9/2 5 17/2 9/2 5 17/2 9/2 5 17/2 9/2 5 17/2 5/2 5 13/2 5/2 5 13/2 5/2 5 13/2 5/2 5 13/2 5/2 5 13/2 5/2 5 13/2 5 9/2 5 9/2 5 9/2 5 9/2 5 9/2 5 9/2 19/2 5 27/2 19/2 5 27/2 19/2 5 27/2 19/2 5 27/2 19/2 5 27/2 19/2 5 27/2 15/2 5 23/2 15/2 5 23/2 15/2 5 23/2 15/2 5 23/2 15/2 5 23/2 15/2 5 23/2 11/2 5 19/2 11/2 5 19/2 11/2 5 19/2 11/2 5 19/2 11/2 5 19/2 11/2 5 19/2 7/2 5 15/2 7/2 5 15/2 7/2 5 15/2 7/2 5 15/2 7/2 5 15/2 7/2 5 15/2 3/2 5 11/2 3/2 5 11/2 3/2 5 11/2 3/2 5 11/2 3/2 5 11/2 3/2 5 11/2
|
||||
1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 536870912 k k0 Sqrt[2 Pi] x 1073741824 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 1048576 k k0 Sqrt[2 Pi] x 2097152 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 8192 k k0 Sqrt[2 Pi] x 16384 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 32 k k0 Sqrt[2 Pi] x 64 k k0 Sqrt[2 Pi] x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x Sqrt[k] k0 x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 4294967296 k k0 Sqrt[2 Pi] x 8589934592 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 8388608 k k0 Sqrt[2 Pi] x 16777216 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 65536 k k0 Sqrt[2 Pi] x 131072 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 256 k k0 Sqrt[2 Pi] x 512 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 2 k k0 Sqrt[2 Pi] x 4 k k0 Sqrt[2 Pi] x
|
||||
Series[Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[3, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 3 && q == 5 && κ == 5 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0 && k < k0], {k, Infinity, 10}]
|
||||
|
||||
Simplify::time: Time spent on a transformation exceeded 300. seconds, and the transformation was aborted. Increasing the value of TimeConstraint option may improve the result of simplification.
|
||||
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[3, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 3 && q == 5 && κ == 5]
|
|
@ -0,0 +1,4 @@
|
|||
(-(k^6*(-35 + 16*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 2*k^4*(-35 + 24*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 8*k^2*(-7 + 6*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5 + 16*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^7)/(336*k^4) + (k^6*(-35 + 16*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 2*k^4*(-35 + 24*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 8*k^2*(-7 + 6*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5 + 16*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^7)/(168*k^4) - (k^6*(-35 + 16*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 2*k^4*(-35 + 24*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 8*k^2*(-7 + 6*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5 + 16*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^7)/(168*k^4) + (k^6*(-35 + 16*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 2*k^4*(-35 + 24*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 8*k^2*(-7 + 6*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5 + 16*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^7)/(336*k^4) - (k^6*(-35 + 16*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 2*k^4*(-35 + 24*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 8*k^2*(-7 + 6*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5 + 16*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^7)/(1680*k^4) + (I/1680*(k^6*(35*k0 - 16*Sqrt[-k^2 + k0^2]) + 16*k0^6*(-k0 + Sqrt[-k^2 + k0^2]) - 8*k^2*k0^4*(-7*k0 + 6*Sqrt[-k^2 + k0^2]) + 2*k^4*k0^2*(-35*k0 + 24*Sqrt[-k^2 + k0^2])))/k^4)/k0^5
|
||||
(-(Power(k,6)*(-35 + 16*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*(c - Complex(0,1)*k0) + 2*Power(k,4)*(-35 + 24*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,3) + 8*Power(k,2)*(-7 + 6*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,5) + 16*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,7))/(336.*Power(k,4)) + (Power(k,6)*(-35 + 16*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*(2*c - Complex(0,1)*k0) + 2*Power(k,4)*(-35 + 24*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,3) + 8*Power(k,2)*(-7 + 6*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,5) + 16*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,7))/(168.*Power(k,4)) - (Power(k,6)*(-35 + 16*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*(3*c - Complex(0,1)*k0) + 2*Power(k,4)*(-35 + 24*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,3) + 8*Power(k,2)*(-7 + 6*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,5) + 16*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,7))/(168.*Power(k,4)) + (Power(k,6)*(-35 + 16*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*(4*c - Complex(0,1)*k0) + 2*Power(k,4)*(-35 + 24*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,3) + 8*Power(k,2)*(-7 + 6*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,5) + 16*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,7))/(336.*Power(k,4)) - (Power(k,6)*(-35 + 16*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*(5*c - Complex(0,1)*k0) + 2*Power(k,4)*(-35 + 24*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,3) + 8*Power(k,2)*(-7 + 6*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,5) + 16*(-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,7))/(1680.*Power(k,4)) + (Complex(0,0.0005952380952380953)*(Power(k,6)*(35*k0 - 16*Sqrt(-Power(k,2) + Power(k0,2))) + 16*Power(k0,6)*(-k0 + Sqrt(-Power(k,2) + Power(k0,2))) - 8*Power(k,2)*Power(k0,4)*(-7*k0 + 6*Sqrt(-Power(k,2) + Power(k0,2))) + 2*Power(k,4)*Power(k0,2)*(-35*k0 + 24*Sqrt(-Power(k,2) + Power(k0,2)))))/Power(k,4))/Power(k0,5)
|
||||
SeriesData[k, Infinity, {(4*c^5)/k0^5, (-75*c^6)/(2*k0^5) + ((15*I)*c^5)/k0^4, (160*c^7)/k0^5 - ((120*I)*c^6)/k0^4 - (24*c^5)/k0^3, (-35*(75*c^8 - (80*I)*c^7*k0 - 30*c^6*k0^2 + (4*I)*c^5*k0^3))/(8*k0^5), 0, (21*(2025*c^10 - (3310*I)*c^9*k0 - 2250*c^8*k0^2 + (800*I)*c^7*k0^3 + 150*c^6*k0^4 - (12*I)*c^5*k0^5))/(32*k0^5), 0, (-33*(20900*c^12 - (44860*I)*c^11*k0 - 42525*c^10*k0^2 + (23170*I)*c^9*k0^3 + 7875*c^8*k0^4 - (1680*I)*c^7*k0^5 - 210*c^6*k0^6 + (12*I)*c^5*k0^7))/(64*k0^5)}, 2, 11, 1]
|
||||
-(5*(k^6*(-35 + 16*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 2*k^4*(-35 + 24*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 8*k^2*(-7 + 6*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5 + 16*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^7) - 10*(k^6*(-35 + 16*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 2*k^4*(-35 + 24*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 8*k^2*(-7 + 6*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5 + 16*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^7) + 10*(k^6*(-35 + 16*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 2*k^4*(-35 + 24*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 8*k^2*(-7 + 6*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5 + 16*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^7) - 5*(k^6*(-35 + 16*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 2*k^4*(-35 + 24*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 8*k^2*(-7 + 6*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5 + 16*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^7) + k^6*(-35 + 16*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 2*k^4*(-35 + 24*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 8*k^2*(-7 + 6*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5 + 16*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^7 - I*(k^6*(35*k0 - 16*Sqrt[-k^2 + k0^2]) + 16*k0^6*(-k0 + Sqrt[-k^2 + k0^2]) - 8*k^2*k0^4*(-7*k0 + 6*Sqrt[-k^2 + k0^2]) + 2*k^4*k0^2*(-35*k0 + 24*Sqrt[-k^2 + k0^2])))/(1680*k^4*k0^5)
|
|
@ -0,0 +1,4 @@
|
|||
(-(35*k^8 + 8*k^6*(35 - 16*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 16*k^4*(35 - 24*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 + 64*k^2*(7 - 6*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6 - 128*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^8)/(2688*k^5) + (35*k^8 + 8*k^6*(35 - 16*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 16*k^4*(35 - 24*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 + 64*k^2*(7 - 6*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6 - 128*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^8)/(1344*k^5) - (35*k^8 + 8*k^6*(35 - 16*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 16*k^4*(35 - 24*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 + 64*k^2*(7 - 6*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6 - 128*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^8)/(1344*k^5) + (35*k^8 + 8*k^6*(35 - 16*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 16*k^4*(35 - 24*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 + 64*k^2*(7 - 6*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6 - 128*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^8)/(2688*k^5) - (35*k^8 + 8*k^6*(35 - 16*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 16*k^4*(35 - 24*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 + 64*k^2*(7 - 6*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^6 - 128*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^8)/(13440*k^5) + (35*k^8 + 16*k^4*k0^3*(35*k0 - 24*Sqrt[-k^2 + k0^2]) + 128*k0^7*(k0 - Sqrt[-k^2 + k0^2]) + 64*k^2*k0^5*(-7*k0 + 6*Sqrt[-k^2 + k0^2]) + 8*k^6*k0*(-35*k0 + 16*Sqrt[-k^2 + k0^2]))/(13440*k^5))/k0^5
|
||||
(-(35*Power(k,8) + 8*Power(k,6)*(35 - 16*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,2) + 16*Power(k,4)*(35 - 24*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,4) + 64*Power(k,2)*(7 - 6*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,6) - 128*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,8))/(2688.*Power(k,5)) + (35*Power(k,8) + 8*Power(k,6)*(35 - 16*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,2) + 16*Power(k,4)*(35 - 24*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,4) + 64*Power(k,2)*(7 - 6*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,6) - 128*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,8))/(1344.*Power(k,5)) - (35*Power(k,8) + 8*Power(k,6)*(35 - 16*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,2) + 16*Power(k,4)*(35 - 24*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,4) + 64*Power(k,2)*(7 - 6*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,6) - 128*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,8))/(1344.*Power(k,5)) + (35*Power(k,8) + 8*Power(k,6)*(35 - 16*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,2) + 16*Power(k,4)*(35 - 24*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,4) + 64*Power(k,2)*(7 - 6*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,6) - 128*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,8))/(2688.*Power(k,5)) - (35*Power(k,8) + 8*Power(k,6)*(35 - 16*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,2) + 16*Power(k,4)*(35 - 24*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,4) + 64*Power(k,2)*(7 - 6*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,6) - 128*(-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,8))/(13440.*Power(k,5)) + (35*Power(k,8) + 16*Power(k,4)*Power(k0,3)*(35*k0 - 24*Sqrt(-Power(k,2) + Power(k0,2))) + 128*Power(k0,7)*(k0 - Sqrt(-Power(k,2) + Power(k0,2))) + 64*Power(k,2)*Power(k0,5)*(-7*k0 + 6*Sqrt(-Power(k,2) + Power(k0,2))) + 8*Power(k,6)*k0*(-35*k0 + 16*Sqrt(-Power(k,2) + Power(k0,2))))/(13440.*Power(k,5)))/Power(k0,5)
|
||||
SeriesData[k, Infinity, {(5*c^5)/k0^5, (-60*c^6)/k0^5 + ((24*I)*c^5)/k0^4, (35*(20*c^7 - (15*I)*c^6*k0 - 3*c^5*k0^2))/(2*k0^5), (-1200*c^8)/k0^5 + ((1280*I)*c^7)/k0^4 + (480*c^6)/k0^3 - ((64*I)*c^5)/k0^2, (105*(331*c^9 - (450*I)*c^8*k0 - 240*c^7*k0^2 + (60*I)*c^6*k0^3 + 6*c^5*k0^4))/(16*k0^5), 0, (-11*(22430*c^11 - (42525*I)*c^10*k0 - 34755*c^9*k0^2 + (15750*I)*c^8*k0^3 + 4200*c^7*k0^4 - (630*I)*c^6*k0^5 - 42*c^5*k0^6))/(32*k0^5), 0, (143*(52507*c^13 - (125400*I)*c^12*k0 - 134580*c^11*k0^2 + (85050*I)*c^10*k0^3 + 34755*c^9*k0^4 - (9450*I)*c^8*k0^5 - 1680*c^7*k0^6 + (180*I)*c^6*k0^7 + 9*c^5*k0^8))/(128*k0^5)}, 2, 11, 1]
|
||||
(5*k^6*(-35 + 16*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 10*k^4*(-35 + 24*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 + 40*k^2*(-7 + 6*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6 + 80*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^8 + 10*k^6*(35 - 16*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 20*k^4*(35 - 24*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 + 80*k^2*(7 - 6*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6 - 160*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^8 + 10*k^6*(-35 + 16*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 20*k^4*(-35 + 24*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 + 80*k^2*(-7 + 6*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6 + 160*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^8 + 5*k^6*(35 - 16*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 10*k^4*(35 - 24*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 + 40*k^2*(7 - 6*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6 - 80*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^8 + k^6*(-35 + 16*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 2*k^4*(-35 + 24*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 + 8*k^2*(-7 + 6*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^6 + 16*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^8 + 2*k^4*k0^3*(35*k0 - 24*Sqrt[-k^2 + k0^2]) + 16*k0^7*(k0 - Sqrt[-k^2 + k0^2]) + 8*k^2*k0^5*(-7*k0 + 6*Sqrt[-k^2 + k0^2]) + k^6*k0*(-35*k0 + 16*Sqrt[-k^2 + k0^2]))/(1680*k^5*k0^5)
|
Loading…
Reference in New Issue