Kinda reasonable form of 1D in 3D Ewald.

Former-commit-id: eb5c54026cff0c2889d32cd2c6288e7be2cbb3e9
This commit is contained in:
Marek Nečada 2020-06-21 18:59:32 +03:00
parent cae5cee97d
commit 299bb6fc03
1 changed files with 311 additions and 5 deletions

View File

@ -162,6 +162,25 @@
\end_inset \end_inset
\end_layout
\begin_layout Section
General formula
\end_layout
\begin_layout Standard
We need to find the expansion coefficient
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{i}{\kappa j_{l'}\left(\kappa\left|\vect r\right|\right)}\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right)\ushD{l'}{m'}\left(\uvec r\right).\label{eq:tau extraction formula}
\end{equation}
\end_inset
\end_layout \end_layout
\begin_layout Standard \begin_layout Standard
@ -354,8 +373,153 @@ e^{-\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}
hence hence
\begin_inset Formula \begin_inset Formula
\begin{align*}
\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right) & =-\frac{1}{2\pi\mathcal{A}}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ushD lm\left(\uvec r\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{1}{n!}\left(-\frac{\left(\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect K}^{2}}{4}\right)^{n}\underbrace{\int_{\kappa^{2}\gamma_{\vect K}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect s_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\tau^{-1-n}\ud\tau}_{\Delta_{n+1/2}}\\
& =-\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{\Delta_{n+1/2}}{n!}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(-\frac{\left(\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect K}^{2}}{4}\right)^{n}\\
& =-\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{n!}\Delta_{n+1/2}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{k=0}^{n}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left|\vect r_{\bot}\right|^{2(n-k)}\left(2\vect r_{\bot}\cdot\vect s_{\bot}\right)^{k}
\end{align*}
\end_inset
If we label
\begin_inset Formula $\left|\vect r_{\bot}\right|\left|\vect s_{\bot}\right|\cos\varphi\equiv\vect r_{\bot}\cdot\vect s_{\bot}$
\end_inset
, we have
\begin_inset Formula
\[ \[
\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi\mathcal{A}}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ushD lm\left(\uvec r\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{1}{n!}\left(-\frac{\left(\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect K}^{2}}{4}\right)^{n}\underbrace{\int_{\kappa^{2}\gamma_{\vect K}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect s_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\tau^{-1-n}\ud\tau}_{\Delta_{n+1/2}} \int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{n!}\Delta_{n+1/2}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{k=0}^{n}\left(2\left|\vect s_{\bot}\right|\right)^{k}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left|\vect r_{\bot}\right|^{2n-k}\left(\cos\varphi\right)^{k}
\]
\end_inset
and if we label
\begin_inset Formula $\left|\vect r\right|\sin\theta\equiv\left|\vect r_{\bot}\right|$
\end_inset
\begin_inset Formula
\[
\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{n!}\Delta_{n+1/2}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{k=0}^{n}\left|\vect r\right|^{2n-k}\left(2\left|\vect s_{\bot}\right|\right)^{k}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\theta\right)^{2n-k}\left(\cos\varphi\right)^{k}
\]
\end_inset
Now let's put the RHS into
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:tau extraction formula"
plural "false"
caps "false"
noprefix "false"
\end_inset
and try eliminating some sum by taking the limit
\begin_inset Formula $\left|\vect r\right|\to0$
\end_inset
.
We have
\begin_inset Formula $j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\sim\left(\left|\vect K\right|\left|\vect r\right|\right)^{l}/\left(2l+1\right)!!$
\end_inset
; the denominator from
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:tau extraction formula"
plural "false"
caps "false"
noprefix "false"
\end_inset
behaves like
\begin_inset Formula $j_{l'}\left(\kappa\left|\vect r\right|\right)\sim\left(\kappa\left|\vect r\right|\right)^{l'}/\left(2l'+1\right)!!.$
\end_inset
The leading terms are hence those with
\begin_inset Formula $\left|\vect r\right|^{l-l'+2n-k}$
\end_inset
.
So
\begin_inset Formula
\[
\tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi\mathcal{A}\kappa^{1+l'}}\left(2l'+1\right)!!\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}\frac{\left|\vect K\right|^{l}}{\left(2l+1\right)!!}\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{n!}\Delta_{n+1/2}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{k=0}^{n}\delta_{l'-l,2n-k}\left(2\left|\vect s_{\bot}\right|\right)^{k}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\theta\right)^{l'-l}\left(\cos\varphi\right)^{k}.
\]
\end_inset
Let's now focus on rearranging the sums; we have
\begin_inset Formula
\[
S(l')\equiv\sum_{l=0}^{\infty}\sum_{n=0}^{\infty}\sum_{k=0}^{n}\delta_{l'-l,2n-k}f(l',l,n,k)=\sum_{l=0}^{\infty}\sum_{n=0}^{\infty}\sum_{k=0}^{n}\delta_{l'-l,2n-k}f(l',l,n,2n-l'+l)
\]
\end_inset
We have
\begin_inset Formula $0\le k\le n$
\end_inset
, hence
\begin_inset Formula $0\le2n-l'+l\le n$
\end_inset
, hence
\begin_inset Formula $-2n\le-l'+l\le-n$
\end_inset
, hence also
\begin_inset Formula $l'-2n\le l\le l'-n$
\end_inset
, which gives the opportunity to swap the
\begin_inset Formula $l,n$
\end_inset
sums and the
\begin_inset Formula $l$
\end_inset
-sum becomes finite; so also consuming
\begin_inset Formula $\sum_{k=0}^{n}\delta_{l'-l,2n-k}$
\end_inset
we get
\begin_inset Formula
\[
S(l')=\sum_{n=0}^{\infty}\sum_{l=\max(0,l'-2n)}^{l'-n}f(l',l,n,2n-l'+l).
\]
\end_inset
Finally, we see that the interval of valid
\begin_inset Formula $l$
\end_inset
becomes empty when
\begin_inset Formula $l'-n<0$
\end_inset
, i.e.
\begin_inset Formula $n>l'$
\end_inset
; so we get a finite sum
\begin_inset Formula
\[
S(l')=\sum_{n=0}^{l'}\sum_{l=\max(0,l'-2n)}^{l'-n}f(l',l,n,2n-l'+l).
\]
\end_inset
Applying rearrangement,
\begin_inset Formula
\[
\tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi\mathcal{A}\kappa^{1+l'}}\left(2l'+1\right)!!\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{n=0}^{l'}\frac{\left(-1\right)^{n}}{n!}\Delta_{n+1/2}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{l=\max\left(0,l'-2n\right)}^{l'-n}4\pi i^{l}\left(2\left|\vect s_{\bot}\right|\right)^{2n-l'+l}\frac{\left|\vect K\right|^{l}}{\left(2l+1\right)!!}\sum_{m=-l}^{l}\ush lm\left(\uvec K\right)\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\theta\right)^{l'-l}\left(\cos\varphi\right)^{2n-l'+l}.
\] \]
\end_inset \end_inset
@ -363,6 +527,107 @@ hence
\end_layout \end_layout
\begin_layout Section
Z-aligned lattice
\end_layout
\begin_layout Standard
Now we set some conventions: let the lattice lie on the
\begin_inset Formula $z$
\end_inset
axis, so that
\begin_inset Formula $\vect s_{\bot},\vect r_{\bot}$
\end_inset
lie in the
\begin_inset Formula $xy$
\end_inset
-plane.
\begin_inset Note Note
status open
\begin_layout Plain Layout
(TODO check the meaning of
\begin_inset Formula $\vect k$
\end_inset
and possible additional phase factor.)
\end_layout
\end_inset
If we write
\begin_inset Formula $\vect s_{\bot}=\uvec x\left|\vect s_{\bot}\right|\cos\Phi+\uvec y\left|\vect s_{\bot}\right|\sin\Phi$
\end_inset
,
\begin_inset Formula $\vect r_{\bot}=\uvec x\left|\vect r_{\bot}\right|\cos\phi+\uvec y\left|\vect r_{\bot}\right|\sin\phi=\uvec x\left|\vect r\right|\sin\theta\cos\phi+\uvec y\left|\vect r\right|\sin\theta\sin\phi$
\end_inset
, we have
\begin_inset Formula $\varphi=\phi-\Phi$
\end_inset
.
Also, in this convention
\begin_inset Formula $\ush lm\left(\uvec K\right)=0$
\end_inset
for
\begin_inset Formula $m\ne0$
\end_inset
, so
\begin_inset Formula
\[
\tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi\mathcal{A}\kappa^{1+l'}}\left(2l'+1\right)!!\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{n=0}^{l'}\frac{\left(-1\right)^{n}}{n!}\Delta_{n+1/2}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{l=\max\left(0,l'-2n\right)}^{l'-n}4\pi i^{l}\left(2\left|\vect s_{\bot}\right|\right)^{2n-l'+l}\frac{\left|\vect K\right|^{l}}{\left(2l+1\right)!!}\ush l0\left(\uvec K\right)\underbrace{\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD l0\left(\uvec r\right)\left(\sin\theta\right)^{l'-l}\left(\cos\varphi\right)^{2n-l'+l}}_{\equiv A_{l',l,n,m'}}.
\]
\end_inset
Let's also fix the (dual) spherical harmonics for now,
\begin_inset Formula
\[
\ushD lm\left(\uvec r\right)=\lambda'_{lm}e^{-im\phi}P_{l}^{-m}\left(\cos\theta\right);
\]
\end_inset
the angular integral then becomes (we also use
\begin_inset Formula $e^{-im'\phi}=e^{im'\Phi}e^{-im'\varphi}$
\end_inset
)
\begin_inset Formula
\begin{align*}
A_{l',l,n,m'} & \equiv\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD l0\left(\uvec r\right)\left(\sin\theta\right)^{l'-l}\left(\cos\varphi\right)^{2n-l'+l}\\
& =\lambda'_{l'm'}\lambda'_{l0}e^{im'\Phi}\int_{0}^{\pi}\ud\theta\,\sin\theta P_{l'}^{-m'}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)\left(\sin\theta\right)^{l'-l}\int_{0}^{2\pi}\ud\varphi\,e^{-im'\varphi}\left(\cos\varphi\right)^{2n-l'+l}.
\end{align*}
\end_inset
The asimuthal integral evaluates to
\begin_inset Formula
\[
\int_{0}^{2\pi}\ud\varphi\,e^{-im'\varphi}\left(\cos\varphi\right)^{2n-l'+l}=\pi\delta_{\left|m'\right|,2n-l'+l}
\]
\end_inset
(note that
\begin_inset Formula $2n-l'+l\ge0$
\end_inset
as it's the former index
\begin_inset Formula $k$
\end_inset
).
That eliminates one of the two remaining (finite) sums.
\end_layout
\begin_layout Standard \begin_layout Standard
\begin_inset Note Note \begin_inset Note Note
status open status open
@ -386,6 +651,10 @@ BTW:
\end_layout \end_layout
\begin_layout Standard \begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Plain Layout
Now we set the conventions: let the lattice lie on the Now we set the conventions: let the lattice lie on the
\begin_inset Formula $z$ \begin_inset Formula $z$
\end_inset \end_inset
@ -418,6 +687,38 @@ Now we set the conventions: let the lattice lie on the
\end_inset \end_inset
\end_layout
\begin_layout Plain Layout
Also, in this convention
\begin_inset Formula $\ush lm\left(\uvec K\right)=0$
\end_inset
for
\begin_inset Formula $m\ne0$
\end_inset
, so
\end_layout
\begin_layout Plain Layout
\begin_inset Formula
\begin{align*}
\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right) & =-\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush l0\left(\uvec K\right)\times\\
& \quad\times\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD l0\left(\uvec r\right)\sum_{n=0}^{\infty}\Delta_{n+1/2}\frac{1}{n!}\left(-\frac{\left(\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect K}^{2}}{4}\right)^{n}.
\end{align*}
\end_inset
Let's also fix the spherical harmonics for now,
\begin_inset Formula
\[
\ushD lm\left(\uvec r\right)=\lambda'_{lm}e^{-im\phi}P_{l}^{-m}\left(\cos\theta\right)
\]
\end_inset
Also, in this convention Also, in this convention
\begin_inset Formula $\ush lm\left(\uvec K\right)=0$ \begin_inset Formula $\ush lm\left(\uvec K\right)=0$
\end_inset \end_inset
@ -437,7 +738,7 @@ Also, in this convention
\end_layout \end_layout
\begin_layout Standard \begin_layout Plain Layout
Let's also fix the spherical harmonics for now, Let's also fix the spherical harmonics for now,
\begin_inset Formula \begin_inset Formula
\[ \[
@ -449,7 +750,7 @@ Let's also fix the spherical harmonics for now,
\end_layout \end_layout
\begin_layout Standard \begin_layout Plain Layout
The angular integral (assuming it can be separated from the rest like this) The angular integral (assuming it can be separated from the rest like this)
is is
\begin_inset Formula \begin_inset Formula
@ -462,7 +763,7 @@ I_{l'}^{m'}\equiv\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)e^{-\
\end_layout \end_layout
\begin_layout Standard \begin_layout Plain Layout
Let's further extract the azimuthal part Let's further extract the azimuthal part
\begin_inset Formula $\left(w\equiv2r_{\bot}s_{\bot}\kappa^{2}\gamma_{\vect K}^{2}/4\tau\right)$ \begin_inset Formula $\left(w\equiv2r_{\bot}s_{\bot}\kappa^{2}\gamma_{\vect K}^{2}/4\tau\right)$
\end_inset \end_inset
@ -556,7 +857,7 @@ Althought it's not superobvious, this sum is symmetric w.r.t.
. .
\end_layout \end_layout
\begin_layout Standard \begin_layout Plain Layout
Let's do the polar integration next: Let's do the polar integration next:
\begin_inset Formula $r_{\bot}=r\sin\theta$ \begin_inset Formula $r_{\bot}=r\sin\theta$
\end_inset \end_inset
@ -616,6 +917,11 @@ so we can fix
\end_inset \end_inset
\end_layout
\end_inset
\begin_inset Formula $ $ \begin_inset Formula $ $
\end_inset \end_inset