Implement some of Javier's notes.

Former-commit-id: 3881eccd2bbca4975d50c4a749751b7c134d6698
This commit is contained in:
Marek Nečada 2019-08-06 10:16:53 +03:00
parent c70317dc25
commit 2a890c56ac
3 changed files with 69 additions and 39 deletions

View File

@ -481,7 +481,11 @@ The single-particle scattering problem at frequency
\end_inset \end_inset
. .
Inside this volume, the electric field can be expanded as Inside
\begin_inset Formula $\openball 0{R^{>}}\backslash B_{0}\left(R\right)$
\end_inset
, the electric field can be expanded as
\begin_inset Note Note \begin_inset Note Note
status open status open
@ -770,7 +774,7 @@ literal "false"
its (maximum) refractive index. its (maximum) refractive index.
\begin_inset Note Note \begin_inset Note Note
status open status collapsed
\begin_layout Plain Layout \begin_layout Plain Layout
\begin_inset Formula \begin_inset Formula
@ -1281,7 +1285,7 @@ In practice, the multiple-scattering problem is solved in its truncated
\begin_inset Formula $l\le L_{p}$ \begin_inset Formula $l\le L_{p}$
\end_inset \end_inset
, laeving only , leaving only
\begin_inset Formula $N_{p}=2L_{p}\left(L_{p}+2\right)$ \begin_inset Formula $N_{p}=2L_{p}\left(L_{p}+2\right)$
\end_inset \end_inset
@ -1428,11 +1432,7 @@ Let
\end_inset \end_inset
where an explicit formula for the (regular) where an explicit formula for the regular translation operator
\emph on
translation operator
\emph default
\begin_inset Formula $\tropr$ \begin_inset Formula $\tropr$
\end_inset \end_inset
@ -1547,7 +1547,7 @@ reference "eq:regular vswf translation"
, ,
\begin_inset Formula \begin_inset Formula
\[ \[
\vect E\left(\vect r,\omega\right)=\sum_{\tau,l,m}\rcoeffptlm p{\tau}lm\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{q}-\vect r_{p}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\vect r-\vect r_{q}\right) \vect E\left(\vect r,\omega\right)=\sum_{\tau,l,m}\rcoeffptlm p{\tau}lm\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{q}-\vect r_{p}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(k\left(\vect r-\vect r_{q}\right)\right)
\] \]
\end_inset \end_inset
@ -1579,7 +1579,12 @@ reference "eq:regular vswf coefficient translation"
\end_inset \end_inset
(note the reversed indices; TODO redefine them in (note the reversed indices
\begin_inset Note Note
status open
\begin_layout Plain Layout
; TODO redefine them in
\begin_inset CommandInset ref \begin_inset CommandInset ref
LatexCommand eqref LatexCommand eqref
reference "eq:regular vswf translation" reference "eq:regular vswf translation"
@ -1593,7 +1598,12 @@ reference "eq:singular vswf translation"
\end_inset \end_inset
? Similarly, if we had only outgoing waves in the original expansion around ?
\end_layout
\end_inset
) Similarly, if we had only outgoing waves in the original expansion around
\begin_inset Formula $\vect r_{p}$ \begin_inset Formula $\vect r_{p}$
\end_inset \end_inset

View File

@ -329,6 +329,16 @@ noprefix "false"
\begin_layout Standard \begin_layout Standard
As in the case of a finite system, eq. As in the case of a finite system, eq.
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Multiple-scattering problem unit cell"
plural "false"
caps "false"
noprefix "false"
\end_inset
can be written in a shorter block-matrix form, can be written in a shorter block-matrix form,
\begin_inset Formula \begin_inset Formula
\begin{equation} \begin{equation}
@ -526,7 +536,17 @@ noprefix "false"
\begin_inset Formula $\left|\vect k\right|=\sqrt{\epsilon\mu}\omega/c_{0}$ \begin_inset Formula $\left|\vect k\right|=\sqrt{\epsilon\mu}\omega/c_{0}$
\end_inset \end_inset
(modulo lattice points; TODO write this a clean way). (modulo reciprocal lattice points
\begin_inset Note Note
status open
\begin_layout Plain Layout
TODO write this in a clean way
\end_layout
\end_inset
).
A somehow challenging step is to distinguish the different bands that can A somehow challenging step is to distinguish the different bands that can
all be very close to the empty lattice approximation, especially if the all be very close to the empty lattice approximation, especially if the
particles in the systems are small. particles in the systems are small.
@ -687,7 +707,7 @@ translation operator for spherical waves originating in
\end_inset \end_inset
is in fact a function of a single 3d argument, is in fact a function of a single 3d argument,
\begin_inset Formula $S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})=S(\vect 0\leftarrow\vect r+\vect r_{\beta}-\vect r_{\alpha})=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha})$ \begin_inset Formula $S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})=S(\vect0\leftarrow\vect r+\vect r_{\beta}-\vect r_{\alpha})=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0)=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha})$
\end_inset \end_inset
. .
@ -701,7 +721,7 @@ reference "eq:W integral"
can be rewritten as can be rewritten as
\begin_inset Formula \begin_inset Formula
\[ \[
W_{\alpha\beta}(\vect k)=\left(2\pi\right)^{\frac{d}{2}}\uaft{(\dc{\basis u}S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0))\left(\vect k\right)} W_{\alpha\beta}(\vect k)=\left(2\pi\right)^{\frac{d}{2}}\uaft{(\dc{\basis u}S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0))\left(\vect k\right)}
\] \]
\end_inset \end_inset
@ -735,10 +755,10 @@ reference "eq:Dirac comb uaFt"
(REF?) for the Fourier transform of Dirac comb) (REF?) for the Fourier transform of Dirac comb)
\begin_inset Formula \begin_inset Formula
\begin{eqnarray} \begin{eqnarray}
W_{\alpha\beta}(\vect k) & = & \left(\left(\uaft{\dc{\basis u}}\right)\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\right)(\vect k)\nonumber \\ W_{\alpha\beta}(\vect k) & = & \left(\left(\uaft{\dc{\basis u}}\right)\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0)}\right)\right)(\vect k)\nonumber \\
& = & \frac{\left|\det\recb{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\left(\dc{\recb{\basis u}}^{(d)}\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\right)\left(\vect k\right)\nonumber \\ & = & \frac{\left|\det\recb{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\left(\dc{\recb{\basis u}}^{(d)}\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0)}\right)\right)\left(\vect k\right)\nonumber \\
& = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right)\label{eq:W sum in reciprocal space}\\ & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0)}\right)\left(\vect k-\vect K\right)\label{eq:W sum in reciprocal space}\\
& = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}e^{i\left(\vect k-\vect K\right)\cdot\left(-\vect r_{\beta}+\vect r_{\alpha}\right)}\left(\uaft{S(\vect{\bullet}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right)\nonumber & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}e^{i\left(\vect k-\vect K\right)\cdot\left(-\vect r_{\beta}+\vect r_{\alpha}\right)}\left(\uaft{S(\vect{\bullet}\leftarrow\vect0)}\right)\left(\vect k-\vect K\right)\nonumber
\end{eqnarray} \end{eqnarray}
\end_inset \end_inset
@ -840,8 +860,8 @@ reference "eq:W sum in reciprocal space"
\begin_inset Formula \begin_inset Formula
\begin{eqnarray} \begin{eqnarray}
W_{\alpha\beta}\left(\vect k\right) & = & W_{\alpha\beta}^{\textup{S}}\left(\vect k\right)+W_{\alpha\beta}^{\textup{L}}\left(\vect k\right)\nonumber \\ W_{\alpha\beta}\left(\vect k\right) & = & W_{\alpha\beta}^{\textup{S}}\left(\vect k\right)+W_{\alpha\beta}^{\textup{L}}\left(\vect k\right)\nonumber \\
W_{\alpha\beta}^{\textup{S}}\left(\vect k\right) & = & \sum_{\vect R\in\basis u\ints^{d}}S^{\textup{S}}(\vect 0\leftarrow\vect R+\vect r_{\beta}-\vect r_{\alpha})e^{i\vect k\cdot\vect R}\label{eq:W Short definition}\\ W_{\alpha\beta}^{\textup{S}}\left(\vect k\right) & = & \sum_{\vect R\in\basis u\ints^{d}}S^{\textup{S}}(\vect0\leftarrow\vect R+\vect r_{\beta}-\vect r_{\alpha})e^{i\vect k\cdot\vect R}\label{eq:W Short definition}\\
W_{\alpha\beta}^{\textup{L}}\left(\vect k\right) & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S^{\textup{L}}(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right)\label{eq:W Long definition} W_{\alpha\beta}^{\textup{L}}\left(\vect k\right) & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S^{\textup{L}}(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0)}\right)\left(\vect k-\vect K\right)\label{eq:W Long definition}
\end{eqnarray} \end{eqnarray}
\end_inset \end_inset
@ -879,7 +899,7 @@ CHECK THE FOLLOWING EXPRESSION FOR CORRECT FUNCTION ARGUMENTS
\begin_inset Formula \begin_inset Formula
\begin{equation} \begin{equation}
\sigma_{\nu}^{\mu}\left(\vect k\right)=\sum_{\vect n\in\ints^{d}\backslash\left\{ \vect 0\right\} }e^{i\vect{\vect k}\cdot\vect R_{\vect n}}\ush{\nu}{\mu}\left(\uvec{R_{n}}\right)h_{n}^{(1)}\left(R_{n}\right),\label{eq:sigma lattice sums} \sigma_{\nu}^{\mu}\left(\vect k\right)=\sum_{\vect n\in\ints^{d}\backslash\left\{ \vect0\right\} }e^{i\vect{\vect k}\cdot\vect R_{\vect n}}\ush{\nu}{\mu}\left(\uvec{R_{n}}\right)h_{n}^{(1)}\left(R_{n}\right),\label{eq:sigma lattice sums}
\end{equation} \end{equation}
\end_inset \end_inset

View File

@ -98,11 +98,11 @@ If the system has nontrivial point group symmetries, group theory gives
\end_layout \end_layout
\begin_layout Standard \begin_layout Standard
As an example, if our system has a As an example, if the system has a
\begin_inset Formula $D_{2h}$ \begin_inset Formula $D_{2h}$
\end_inset \end_inset
symmetry and our truncated symmetry and the corresponding truncated
\begin_inset Formula $\left(I-T\trops\right)$ \begin_inset Formula $\left(I-T\trops\right)$
\end_inset \end_inset
@ -961,7 +961,7 @@ where
\begin_inset Formula $1$ \begin_inset Formula $1$
\end_inset \end_inset
through to
\begin_inset Formula $d_{n}$ \begin_inset Formula $d_{n}$
\end_inset \end_inset
@ -969,7 +969,7 @@ where
\begin_inset Formula $i$ \begin_inset Formula $i$
\end_inset \end_inset
goes from 1 through the multiplicity of irreducible representation goes from 1 to the multiplicity of irreducible representation
\begin_inset Formula $\Gamma_{n}$ \begin_inset Formula $\Gamma_{n}$
\end_inset \end_inset
@ -1328,8 +1328,8 @@ horizontal
the same unit cell, e.g. the same unit cell, e.g.
\begin_inset Formula \begin_inset Formula
\begin{align*} \begin{align*}
\outcoeffp{\vect 0A} & \overset{\sigma_{xz}}{\longmapsto}\tilde{J}\left(\sigma_{xz}\right)\outcoeffp{\vect 0E},\\ \outcoeffp{\vect0A} & \overset{\sigma_{xz}}{\longmapsto}\tilde{J}\left(\sigma_{xz}\right)\outcoeffp{\vect0E},\\
\outcoeff_{\vect 0C} & \overset{\sigma_{xz}}{\longmapsto}\tilde{J}\left(\sigma_{xz}\right)\outcoeffp{\vect 0C}, \outcoeff_{\vect0C} & \overset{\sigma_{xz}}{\longmapsto}\tilde{J}\left(\sigma_{xz}\right)\outcoeffp{\vect0C},
\end{align*} \end{align*}
\end_inset \end_inset
@ -1374,8 +1374,8 @@ vertical
, ,
\begin_inset Formula \begin_inset Formula
\begin{align*} \begin{align*}
\outcoeffp{\vect 0A} & \overset{\sigma_{yz}}{\longmapsto}\tilde{J}\left(\sigma_{yz}\right)\outcoeffp{\left(0,1\right)E},\\ \outcoeffp{\vect0A} & \overset{\sigma_{yz}}{\longmapsto}\tilde{J}\left(\sigma_{yz}\right)\outcoeffp{\left(0,1\right)E},\\
\outcoeff_{\vect 0C} & \overset{\sigma_{yz}}{\longmapsto}\tilde{J}\left(\sigma_{yz}\right)\outcoeffp{\left(1,0\right)C}, \outcoeff_{\vect0C} & \overset{\sigma_{yz}}{\longmapsto}\tilde{J}\left(\sigma_{yz}\right)\outcoeffp{\left(1,0\right)C},
\end{align*} \end{align*}
\end_inset \end_inset
@ -1385,22 +1385,22 @@ but we want
\end_inset \end_inset
to operate only inside one unit cell, so we use the Bloch condition to operate only inside one unit cell, so we use the Bloch condition
\begin_inset Formula $\outcoeffp{\vect n,\alpha}=\outcoeffp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}}$ \begin_inset Formula $\outcoeffp{\vect n,\alpha}=\outcoeffp{\vect0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}}$
\end_inset \end_inset
: in this case, we have : in this case, we have
\begin_inset Formula $\outcoeffp{\left(0,1\right)\alpha}=\outcoeffp{\vect 0\alpha}e^{i\vect M_{1}\cdot\vect a_{2}}=\outcoeffp{\vect 0\alpha}e^{i0}=\outcoeffp{\vect 0\alpha}$ \begin_inset Formula $\outcoeffp{\left(0,1\right)\alpha}=\outcoeffp{\vect0\alpha}e^{i\vect M_{1}\cdot\vect a_{2}}=\outcoeffp{\vect0\alpha}e^{i0}=\outcoeffp{\vect0\alpha}$
\end_inset \end_inset
, ,
\begin_inset Formula $\outcoeffp{\left(1,0\right)\alpha}=e^{i\vect M_{1}\cdot\vect a_{2}}\outcoeffp{\vect 0\alpha}=e^{i\pi}\outcoeffp{\vect 0\alpha}=-\outcoeffp{\vect 0\alpha},$ \begin_inset Formula $\outcoeffp{\left(1,0\right)\alpha}=e^{i\vect M_{1}\cdot\vect a_{2}}\outcoeffp{\vect0\alpha}=e^{i\pi}\outcoeffp{\vect0\alpha}=-\outcoeffp{\vect0\alpha},$
\end_inset \end_inset
so so
\begin_inset Formula \begin_inset Formula
\begin{align*} \begin{align*}
\outcoeffp{\vect 0A} & \overset{\sigma_{yz}}{\longmapsto}-\tilde{J}\left(\sigma_{yz}\right)\outcoeffp{\vect 0E},\\ \outcoeffp{\vect0A} & \overset{\sigma_{yz}}{\longmapsto}-\tilde{J}\left(\sigma_{yz}\right)\outcoeffp{\vect0E},\\
\outcoeff_{\vect 0C} & \overset{\sigma_{yz}}{\longmapsto}\tilde{J}\left(\sigma_{yz}\right)\outcoeffp{\vect 0C}. \outcoeff_{\vect0C} & \overset{\sigma_{yz}}{\longmapsto}\tilde{J}\left(\sigma_{yz}\right)\outcoeffp{\vect0C}.
\end{align*} \end{align*}
\end_inset \end_inset
@ -1439,19 +1439,19 @@ the original
rotation, as an example we have rotation, as an example we have
\begin_inset Formula \begin_inset Formula
\begin{align*} \begin{align*}
\outcoeffp{\vect 0A} & \overset{C_{3}}{\longmapsto}\tilde{J}\left(C_{3}\right)\outcoeffp{\left(0,-1\right)E}=e^{2\pi i/3}\tilde{J}\left(C_{3}\right)\outcoeffp{\vect 0E},\\ \outcoeffp{\vect0A} & \overset{C_{3}}{\longmapsto}\tilde{J}\left(C_{3}\right)\outcoeffp{\left(0,-1\right)E}=e^{2\pi i/3}\tilde{J}\left(C_{3}\right)\outcoeffp{\vect0E},\\
\outcoeff_{\vect 0C} & \overset{C_{3}}{\longmapsto}\tilde{J}\left(C_{3}\right)\outcoeffp{\left(1,-1\right)A}=e^{-2\pi i/3}\tilde{J}\left(C_{3}\right)\outcoeffp{\vect 0A},\\ \outcoeff_{\vect0C} & \overset{C_{3}}{\longmapsto}\tilde{J}\left(C_{3}\right)\outcoeffp{\left(1,-1\right)A}=e^{-2\pi i/3}\tilde{J}\left(C_{3}\right)\outcoeffp{\vect0A},\\
\outcoeff_{\vect 0B} & \overset{C_{3}}{\longmapsto}\tilde{J}\left(C_{3}\right)\outcoeffp{\left(1,-1\right)B}=e^{-2\pi i/3}\tilde{J}\left(C_{3}\right)\outcoeffp{\vect 0B}, \outcoeff_{\vect0B} & \overset{C_{3}}{\longmapsto}\tilde{J}\left(C_{3}\right)\outcoeffp{\left(1,-1\right)B}=e^{-2\pi i/3}\tilde{J}\left(C_{3}\right)\outcoeffp{\vect0B},
\end{align*} \end{align*}
\end_inset \end_inset
because in this case, the Bloch condition gives because in this case, the Bloch condition gives
\begin_inset Formula $\outcoeffp{\left(0,-1\right)\alpha}=\outcoeffp{\vect 0\alpha}e^{i\vect K\cdot\left(-\vect a_{2}\right)}=\outcoeffp{\vect 0\alpha}e^{-4\pi i/3}=\outcoeffp{\vect 0\alpha}e^{2\pi i/3}=\outcoeffp{\vect 0\alpha}$ \begin_inset Formula $\outcoeffp{\left(0,-1\right)\alpha}=\outcoeffp{\vect0\alpha}e^{i\vect K\cdot\left(-\vect a_{2}\right)}=\outcoeffp{\vect0\alpha}e^{-4\pi i/3}=\outcoeffp{\vect0\alpha}e^{2\pi i/3}=\outcoeffp{\vect0\alpha}$
\end_inset \end_inset
, ,
\begin_inset Formula $\outcoeffp{\left(1,-1\right)\alpha}=\outcoeffp{\vect 0\alpha}e^{i\vect K\cdot\left(\vect a_{1}-\vect a_{2}\right)}=e^{-2\pi i/3}\outcoeffp{\vect 0\alpha}.$ \begin_inset Formula $\outcoeffp{\left(1,-1\right)\alpha}=\outcoeffp{\vect0\alpha}e^{i\vect K\cdot\left(\vect a_{1}-\vect a_{2}\right)}=e^{-2\pi i/3}\outcoeffp{\vect0\alpha}.$
\end_inset \end_inset