[broken] Jit všude možně (rozbil jsem to)
Former-commit-id: c88f554cee3aed543c657a27982139b3ae1ad0ce
This commit is contained in:
parent
26cabb1e87
commit
2b64a50244
|
@ -152,7 +152,7 @@ def sph_loccart_basis(sph, sphaxis=-1, cartaxis=None):
|
||||||
out = np.concatenate((x,y,z),axis=cartaxis)
|
out = np.concatenate((x,y,z),axis=cartaxis)
|
||||||
return out
|
return out
|
||||||
|
|
||||||
@jit
|
@jit(u=False)
|
||||||
def lpy(nmax, z):
|
def lpy(nmax, z):
|
||||||
"""
|
"""
|
||||||
Associated legendre function and its derivatative at z in the 'y-indexing'.
|
Associated legendre function and its derivatative at z in the 'y-indexing'.
|
||||||
|
@ -249,6 +249,7 @@ _sph_zn = [_sph_zn_1,_sph_zn_2,_sph_zn_3,_sph_zn_4]
|
||||||
|
|
||||||
# computes bessel/hankel functions for orders from 0 up to n; drops
|
# computes bessel/hankel functions for orders from 0 up to n; drops
|
||||||
# the derivatives which are also included in scipy.special.sph_jn/yn
|
# the derivatives which are also included in scipy.special.sph_jn/yn
|
||||||
|
@jit
|
||||||
def zJn(n, z, J=1):
|
def zJn(n, z, J=1):
|
||||||
return _sph_zn[J-1](n=n,z=z)
|
return _sph_zn[J-1](n=n,z=z)
|
||||||
|
|
||||||
|
@ -258,6 +259,7 @@ def zJn(n, z, J=1):
|
||||||
|
|
||||||
# FIXME: this can be expressed simply as:
|
# FIXME: this can be expressed simply as:
|
||||||
# $$ -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}+\delta_{m,-1}) $$
|
# $$ -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}+\delta_{m,-1}) $$
|
||||||
|
@jit(u=True)
|
||||||
def π̃_zerolim(nmax): # seems OK
|
def π̃_zerolim(nmax): # seems OK
|
||||||
"""
|
"""
|
||||||
lim_{θ→ 0-} π̃(cos θ)
|
lim_{θ→ 0-} π̃(cos θ)
|
||||||
|
@ -275,6 +277,7 @@ def π̃_zerolim(nmax): # seems OK
|
||||||
π̃_y = prenorm * π̃_y
|
π̃_y = prenorm * π̃_y
|
||||||
return π̃_y
|
return π̃_y
|
||||||
|
|
||||||
|
@jit(u=True)
|
||||||
def π̃_pilim(nmax): # Taky OK, jen to možná není kompatibilní se vzorečky z mathematiky
|
def π̃_pilim(nmax): # Taky OK, jen to možná není kompatibilní se vzorečky z mathematiky
|
||||||
"""
|
"""
|
||||||
lim_{θ→ π+} π̃(cos θ)
|
lim_{θ→ π+} π̃(cos θ)
|
||||||
|
@ -294,6 +297,7 @@ def π̃_pilim(nmax): # Taky OK, jen to možná není kompatibilní se vzorečky
|
||||||
|
|
||||||
# FIXME: this can be expressed simply as
|
# FIXME: this can be expressed simply as
|
||||||
# $$ -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}-\delta_{m,-1}) $$
|
# $$ -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}-\delta_{m,-1}) $$
|
||||||
|
@jit(u=True)
|
||||||
def τ̃_zerolim(nmax):
|
def τ̃_zerolim(nmax):
|
||||||
"""
|
"""
|
||||||
lim_{θ→ 0-} τ̃(cos θ)
|
lim_{θ→ 0-} τ̃(cos θ)
|
||||||
|
@ -304,6 +308,7 @@ def τ̃_zerolim(nmax):
|
||||||
p0[minus1mmask] = -p0[minus1mmask]
|
p0[minus1mmask] = -p0[minus1mmask]
|
||||||
return p0
|
return p0
|
||||||
|
|
||||||
|
@jit(u=True)
|
||||||
def τ̃_pilim(nmax):
|
def τ̃_pilim(nmax):
|
||||||
"""
|
"""
|
||||||
lim_{θ→ π+} τ̃(cos θ)
|
lim_{θ→ π+} τ̃(cos θ)
|
||||||
|
@ -314,6 +319,7 @@ def τ̃_pilim(nmax):
|
||||||
t[plus1mmask] = -t[plus1mmask]
|
t[plus1mmask] = -t[plus1mmask]
|
||||||
return t
|
return t
|
||||||
|
|
||||||
|
@jit(u=True)
|
||||||
def get_π̃τ̃_y1(θ,nmax):
|
def get_π̃τ̃_y1(θ,nmax):
|
||||||
# TODO replace with the limit functions (below) when θ approaches
|
# TODO replace with the limit functions (below) when θ approaches
|
||||||
# the extreme values at about 1e-6 distance
|
# the extreme values at about 1e-6 distance
|
||||||
|
@ -390,7 +396,7 @@ def vswf_yr1(pos_sph,nmax,J=1):
|
||||||
# return 1j**ny * np.sqrt((2*ny+1)*factorial(ny-my) /
|
# return 1j**ny * np.sqrt((2*ny+1)*factorial(ny-my) /
|
||||||
# (ny*(ny+1)*factorial(ny+my))
|
# (ny*(ny+1)*factorial(ny+my))
|
||||||
# )
|
# )
|
||||||
|
@jit(u=True)
|
||||||
def zplane_pq_y(nmax, betap = 0):
|
def zplane_pq_y(nmax, betap = 0):
|
||||||
"""
|
"""
|
||||||
The z-propagating plane wave expansion coefficients as in [1, (1.12)]
|
The z-propagating plane wave expansion coefficients as in [1, (1.12)]
|
||||||
|
@ -409,6 +415,7 @@ def zplane_pq_y(nmax, betap = 0):
|
||||||
|
|
||||||
|
|
||||||
#import warnings
|
#import warnings
|
||||||
|
@jit(u=True)
|
||||||
def plane_pq_y(nmax, kdir_cart, E_cart):
|
def plane_pq_y(nmax, kdir_cart, E_cart):
|
||||||
"""
|
"""
|
||||||
The plane wave expansion coefficients for any direction kdir_cart
|
The plane wave expansion coefficients for any direction kdir_cart
|
||||||
|
@ -465,11 +472,13 @@ def plane_pq_y(nmax, kdir_cart, E_cart):
|
||||||
# Functions copied from scattering_xu, additionaly normalized
|
# Functions copied from scattering_xu, additionaly normalized
|
||||||
from py_gmm.gmm import vec_trans as vc
|
from py_gmm.gmm import vec_trans as vc
|
||||||
|
|
||||||
|
@jit(u=True)
|
||||||
def q_max(m,n,μ,ν):
|
def q_max(m,n,μ,ν):
|
||||||
return min(n,ν,(n+ν-abs(m+μ))/2)
|
return min(n,ν,(n+ν-abs(m+μ))/2)
|
||||||
|
|
||||||
# returns array with indices corresponding to q
|
# returns array with indices corresponding to q
|
||||||
# argument q does nothing for now
|
# argument q does nothing for now
|
||||||
|
@jit(u=True)
|
||||||
def a_q(m,n,μ,ν,q = None):
|
def a_q(m,n,μ,ν,q = None):
|
||||||
qm=q_max(m,n,μ,ν)
|
qm=q_max(m,n,μ,ν)
|
||||||
res, err= vc.gaunt_xu(m,n,μ,ν,qm)
|
res, err= vc.gaunt_xu(m,n,μ,ν,qm)
|
||||||
|
@ -480,7 +489,7 @@ def a_q(m,n,μ,ν,q = None):
|
||||||
|
|
||||||
# All arguments are single numbers (for now)
|
# All arguments are single numbers (for now)
|
||||||
# ZDE VYCHÁZEJÍ DIVNÁ ZNAMÉNKA
|
# ZDE VYCHÁZEJÍ DIVNÁ ZNAMÉNKA
|
||||||
#@jit
|
@jit(u=True)
|
||||||
def Ã(m,n,μ,ν,kdlj,θlj,φlj,r_ge_d,J):
|
def Ã(m,n,μ,ν,kdlj,θlj,φlj,r_ge_d,J):
|
||||||
"""
|
"""
|
||||||
The à translation coefficient for spherical vector waves.
|
The à translation coefficient for spherical vector waves.
|
||||||
|
@ -604,6 +613,7 @@ def B̃(m,n,μ,ν,kdlj,θlj,φlj,r_ge_d,J):
|
||||||
# In[7]:
|
# In[7]:
|
||||||
|
|
||||||
# Material parameters
|
# Material parameters
|
||||||
|
@jit(u=True)
|
||||||
def ε_drude(ε_inf, ω_p, γ_p, ω): # RELATIVE permittivity, of course
|
def ε_drude(ε_inf, ω_p, γ_p, ω): # RELATIVE permittivity, of course
|
||||||
return ε_inf - ω_p*ω_p/(ω*(ω+1j*γ_p))
|
return ε_inf - ω_p*ω_p/(ω*(ω+1j*γ_p))
|
||||||
|
|
||||||
|
@ -611,6 +621,7 @@ def ε_drude(ε_inf, ω_p, γ_p, ω): # RELATIVE permittivity, of course
|
||||||
# In[8]:
|
# In[8]:
|
||||||
|
|
||||||
# Mie scattering
|
# Mie scattering
|
||||||
|
@jit(u=True)
|
||||||
def mie_coefficients(a, nmax, #ω, ε_i, ε_e=1, J_ext=1, J_scat=3
|
def mie_coefficients(a, nmax, #ω, ε_i, ε_e=1, J_ext=1, J_scat=3
|
||||||
k_i, k_e, μ_i=1, μ_e=1, J_ext=1, J_scat=3):
|
k_i, k_e, μ_i=1, μ_e=1, J_ext=1, J_scat=3):
|
||||||
"""
|
"""
|
||||||
|
@ -782,6 +793,7 @@ def G_Mie_scat_precalc_cart(source_cart, dest_cart, RH, RV, a, nmax, k_i, k_e,
|
||||||
G_source_dest = sph_loccart2cart(G_source_dest, sph=orig2dest_sph, axis=-1)
|
G_source_dest = sph_loccart2cart(G_source_dest, sph=orig2dest_sph, axis=-1)
|
||||||
return G_source_dest
|
return G_source_dest
|
||||||
|
|
||||||
|
@jit(u=True)
|
||||||
def G_Mie_scat_cart(source_cart, dest_cart, a, nmax, k_i, k_e, μ_i=1, μ_e=1, J_ext=1, J_scat=3):
|
def G_Mie_scat_cart(source_cart, dest_cart, a, nmax, k_i, k_e, μ_i=1, μ_e=1, J_ext=1, J_scat=3):
|
||||||
"""
|
"""
|
||||||
TODO
|
TODO
|
||||||
|
@ -801,6 +813,7 @@ def cross_section_Mie(a, nmax, k_i, k_e, μ_i, μ_e,):
|
||||||
# In[9]:
|
# In[9]:
|
||||||
|
|
||||||
# From PRL 112, 253601 (1)
|
# From PRL 112, 253601 (1)
|
||||||
|
@jit(u=True)
|
||||||
def Grr_Delga(nmax, a, r, k, ε_m, ε_b):
|
def Grr_Delga(nmax, a, r, k, ε_m, ε_b):
|
||||||
om = k * c
|
om = k * c
|
||||||
z = (r-a)/a
|
z = (r-a)/a
|
||||||
|
@ -822,6 +835,7 @@ def Grr_Delga(nmax, a, r, k, ε_m, ε_b):
|
||||||
# Test if the decomposition of plane wave works also for absorbing environment (complex k).
|
# Test if the decomposition of plane wave works also for absorbing environment (complex k).
|
||||||
|
|
||||||
# From PRL 112, 253601 (1)
|
# From PRL 112, 253601 (1)
|
||||||
|
@jit(u=True)
|
||||||
def Grr_Delga(nmax, a, r, k, ε_m, ε_b):
|
def Grr_Delga(nmax, a, r, k, ε_m, ε_b):
|
||||||
om = k * c
|
om = k * c
|
||||||
z = (r-a)/a
|
z = (r-a)/a
|
||||||
|
@ -830,7 +844,7 @@ def Grr_Delga(nmax, a, r, k, ε_m, ε_b):
|
||||||
s = np.sum( (n+1)**2 * (ε_m-ε_b) / ((1+z)**(2*n+4) * (ε_m + ((n+1)/n)*ε_b)))
|
s = np.sum( (n+1)**2 * (ε_m-ε_b) / ((1+z)**(2*n+4) * (ε_m + ((n+1)/n)*ε_b)))
|
||||||
return (g0 + s * c**2/(4*π*om**2*ε_b*a**3))
|
return (g0 + s * c**2/(4*π*om**2*ε_b*a**3))
|
||||||
|
|
||||||
|
@jit(u=True)
|
||||||
def G0_dip_1(r_cart,k):
|
def G0_dip_1(r_cart,k):
|
||||||
"""
|
"""
|
||||||
Free-space dyadic Green's function in terms of the spherical vector waves.
|
Free-space dyadic Green's function in terms of the spherical vector waves.
|
||||||
|
@ -847,12 +861,15 @@ def G0_dip_1(r_cart,k):
|
||||||
|
|
||||||
# Free-space dyadic Green's functions from RMP 70, 2, 447 =: [1]
|
# Free-space dyadic Green's functions from RMP 70, 2, 447 =: [1]
|
||||||
# (The numerical value is correct only at the regular part, i.e. r != 0)
|
# (The numerical value is correct only at the regular part, i.e. r != 0)
|
||||||
|
@jit(u=True)
|
||||||
def _P(z):
|
def _P(z):
|
||||||
return (1-1/z+1/(z*z))
|
return (1-1/z+1/(z*z))
|
||||||
|
@jit(u=True)
|
||||||
def _Q(z):
|
def _Q(z):
|
||||||
return (-1+3/z-3/(z*z))
|
return (-1+3/z-3/(z*z))
|
||||||
|
|
||||||
# [1, (9)] FIXME The sign here is most likely wrong!!!
|
# [1, (9)] FIXME The sign here is most likely wrong!!!
|
||||||
|
@jit(u=True)
|
||||||
def G0_analytical(r #cartesian!
|
def G0_analytical(r #cartesian!
|
||||||
, k):
|
, k):
|
||||||
I=np.identity(3)
|
I=np.identity(3)
|
||||||
|
@ -866,6 +883,7 @@ def G0_analytical(r #cartesian!
|
||||||
))
|
))
|
||||||
|
|
||||||
# [1, (11)]
|
# [1, (11)]
|
||||||
|
@jit(u=True)
|
||||||
def G0L_analytical(r, k):
|
def G0L_analytical(r, k):
|
||||||
I=np.identity(3)
|
I=np.identity(3)
|
||||||
rn = sph_loccart2cart(np.array([1.,0.,0.]), cart2sph(r), axis=-1)
|
rn = sph_loccart2cart(np.array([1.,0.,0.]), cart2sph(r), axis=-1)
|
||||||
|
@ -874,10 +892,11 @@ def G0L_analytical(r, k):
|
||||||
return (I-3*rnxrn)/(4*π*k*k*r**3)[...,ň,ň]
|
return (I-3*rnxrn)/(4*π*k*k*r**3)[...,ň,ň]
|
||||||
|
|
||||||
# [1,(10)]
|
# [1,(10)]
|
||||||
|
@jit
|
||||||
def G0T_analytical(r, k):
|
def G0T_analytical(r, k):
|
||||||
return G0_analytical(r,k) - G0L_analytical(r,k)
|
return G0_analytical(r,k) - G0L_analytical(r,k)
|
||||||
|
|
||||||
|
@jit(u=True)
|
||||||
def G0_sum_1_slow(source_cart, dest_cart, k, nmax):
|
def G0_sum_1_slow(source_cart, dest_cart, k, nmax):
|
||||||
my, ny = get_mn_y(nmax)
|
my, ny = get_mn_y(nmax)
|
||||||
nelem = len(my)
|
nelem = len(my)
|
||||||
|
@ -888,6 +907,7 @@ def G0_sum_1_slow(source_cart, dest_cart, k, nmax):
|
||||||
|
|
||||||
|
|
||||||
# Transformations of spherical bases
|
# Transformations of spherical bases
|
||||||
|
@jit
|
||||||
def WignerD_mm(l, quat):
|
def WignerD_mm(l, quat):
|
||||||
"""
|
"""
|
||||||
Calculates Wigner D matrix (as an numpy (2*l+1,2*l+1)-shaped array)
|
Calculates Wigner D matrix (as an numpy (2*l+1,2*l+1)-shaped array)
|
||||||
|
@ -901,6 +921,7 @@ def WignerD_mm(l, quat):
|
||||||
Delems = sf.Wigner_D_element(quat, indices).reshape(2*l+1,2*l+1)
|
Delems = sf.Wigner_D_element(quat, indices).reshape(2*l+1,2*l+1)
|
||||||
return Delems
|
return Delems
|
||||||
|
|
||||||
|
@jit
|
||||||
def WignerD_mm_fromvector(l, vect):
|
def WignerD_mm_fromvector(l, vect):
|
||||||
"""
|
"""
|
||||||
TODO doc
|
TODO doc
|
||||||
|
@ -908,6 +929,7 @@ def WignerD_mm_fromvector(l, vect):
|
||||||
return WignerD_mm(l, quaternion.from_rotation_vector(vect))
|
return WignerD_mm(l, quaternion.from_rotation_vector(vect))
|
||||||
|
|
||||||
|
|
||||||
|
@jit
|
||||||
def WignerD_yy(lmax, quat):
|
def WignerD_yy(lmax, quat):
|
||||||
"""
|
"""
|
||||||
TODO doc
|
TODO doc
|
||||||
|
@ -922,6 +944,7 @@ def WignerD_yy(lmax, quat):
|
||||||
b_in = e_in
|
b_in = e_in
|
||||||
return Delems
|
return Delems
|
||||||
|
|
||||||
|
@jit
|
||||||
def WignerD_yy_fromvector(lmax, vect):
|
def WignerD_yy_fromvector(lmax, vect):
|
||||||
"""
|
"""
|
||||||
TODO doc
|
TODO doc
|
||||||
|
@ -929,7 +952,7 @@ def WignerD_yy_fromvector(lmax, vect):
|
||||||
return WignerD_yy(lmax, quaternion.from_rotation_vector(vect))
|
return WignerD_yy(lmax, quaternion.from_rotation_vector(vect))
|
||||||
|
|
||||||
|
|
||||||
|
@jit
|
||||||
def xflip_yy(lmax):
|
def xflip_yy(lmax):
|
||||||
"""
|
"""
|
||||||
TODO doc
|
TODO doc
|
||||||
|
@ -946,10 +969,12 @@ def xflip_yy(lmax):
|
||||||
b_in = e_in
|
b_in = e_in
|
||||||
return elems
|
return elems
|
||||||
|
|
||||||
|
@jit
|
||||||
def xflip_tyy(lmax):
|
def xflip_tyy(lmax):
|
||||||
fl_yy = xflip_yy(lmax)
|
fl_yy = xflip_yy(lmax)
|
||||||
return np.array([fl_yy,-fl_yy])
|
return np.array([fl_yy,-fl_yy])
|
||||||
|
|
||||||
|
@jit
|
||||||
def xflip_tyty(lmax):
|
def xflip_tyty(lmax):
|
||||||
fl_yy = xflip_yy(lmax)
|
fl_yy = xflip_yy(lmax)
|
||||||
nelem = fl_yy.shape[0]
|
nelem = fl_yy.shape[0]
|
||||||
|
@ -958,6 +983,7 @@ def xflip_tyty(lmax):
|
||||||
fl_tyty[1,:,1,:] = -fl_yy
|
fl_tyty[1,:,1,:] = -fl_yy
|
||||||
return fl_tyty
|
return fl_tyty
|
||||||
|
|
||||||
|
@jit
|
||||||
def yflip_yy(lmax):
|
def yflip_yy(lmax):
|
||||||
"""
|
"""
|
||||||
TODO doc
|
TODO doc
|
||||||
|
@ -969,10 +995,12 @@ def yflip_yy(lmax):
|
||||||
elems[(my % 2)==1] = elems[(my % 2)==1] * -1 # Obvious sign of tiredness (this is correct but ugly; FIXME)
|
elems[(my % 2)==1] = elems[(my % 2)==1] * -1 # Obvious sign of tiredness (this is correct but ugly; FIXME)
|
||||||
return elems
|
return elems
|
||||||
|
|
||||||
|
@jit
|
||||||
def yflip_tyy(lmax):
|
def yflip_tyy(lmax):
|
||||||
fl_yy = yflip_yy(lmax)
|
fl_yy = yflip_yy(lmax)
|
||||||
return np.array([fl_yy,-fl_yy])
|
return np.array([fl_yy,-fl_yy])
|
||||||
|
|
||||||
|
@jit
|
||||||
def yflip_tyty(lmax):
|
def yflip_tyty(lmax):
|
||||||
fl_yy = yflip_yy(lmax)
|
fl_yy = yflip_yy(lmax)
|
||||||
nelem = fl_yy.shape[0]
|
nelem = fl_yy.shape[0]
|
||||||
|
@ -981,6 +1009,7 @@ def yflip_tyty(lmax):
|
||||||
fl_tyty[1,:,1,:] = -fl_yy
|
fl_tyty[1,:,1,:] = -fl_yy
|
||||||
return fl_tyty
|
return fl_tyty
|
||||||
|
|
||||||
|
@jit
|
||||||
def zflip_yy(lmax):
|
def zflip_yy(lmax):
|
||||||
"""
|
"""
|
||||||
TODO doc
|
TODO doc
|
||||||
|
@ -996,10 +1025,12 @@ def zflip_yy(lmax):
|
||||||
b_in = e_in
|
b_in = e_in
|
||||||
return elems
|
return elems
|
||||||
|
|
||||||
|
@jit
|
||||||
def zflip_tyy(lmax):
|
def zflip_tyy(lmax):
|
||||||
fl_yy = zflip_yy(lmax)
|
fl_yy = zflip_yy(lmax)
|
||||||
return np.array([fl_yy,-fl_yy])
|
return np.array([fl_yy,-fl_yy])
|
||||||
|
|
||||||
|
@jit
|
||||||
def zflip_tyty(lmax):
|
def zflip_tyty(lmax):
|
||||||
fl_yy = zflip_yy(lmax)
|
fl_yy = zflip_yy(lmax)
|
||||||
nelem = fl_yy.shape[0]
|
nelem = fl_yy.shape[0]
|
||||||
|
@ -1008,6 +1039,7 @@ def zflip_tyty(lmax):
|
||||||
fl_tyty[1,:,1,:] = -fl_yy
|
fl_tyty[1,:,1,:] = -fl_yy
|
||||||
return fl_tyty
|
return fl_tyty
|
||||||
|
|
||||||
|
@jit
|
||||||
def parity_yy(lmax):
|
def parity_yy(lmax):
|
||||||
"""
|
"""
|
||||||
Parity operator (flip in x,y,z)
|
Parity operator (flip in x,y,z)
|
||||||
|
@ -1025,6 +1057,7 @@ def parity_yy(lmax):
|
||||||
#----------------------------------------------------#
|
#----------------------------------------------------#
|
||||||
|
|
||||||
# We don't really need this particular function anymore, but...
|
# We don't really need this particular function anymore, but...
|
||||||
|
@jit
|
||||||
def _scuffTMatrixConvert_EM_01(EM):
|
def _scuffTMatrixConvert_EM_01(EM):
|
||||||
#print(EM)
|
#print(EM)
|
||||||
if (EM == b'E'):
|
if (EM == b'E'):
|
||||||
|
@ -1034,6 +1067,7 @@ def _scuffTMatrixConvert_EM_01(EM):
|
||||||
else:
|
else:
|
||||||
return None
|
return None
|
||||||
|
|
||||||
|
@jit(u=True)
|
||||||
def loadScuffTMatrices(fileName):
|
def loadScuffTMatrices(fileName):
|
||||||
"""
|
"""
|
||||||
TODO doc
|
TODO doc
|
||||||
|
@ -1069,7 +1103,7 @@ def loadScuffTMatrices(fileName):
|
||||||
|
|
||||||
|
|
||||||
# misc tensor maniputalion
|
# misc tensor maniputalion
|
||||||
|
@jit
|
||||||
def apply_matrix_left(matrix, tensor, axis):
|
def apply_matrix_left(matrix, tensor, axis):
|
||||||
"""
|
"""
|
||||||
TODO doc
|
TODO doc
|
||||||
|
@ -1080,6 +1114,7 @@ def apply_matrix_left(matrix, tensor, axis):
|
||||||
tmp = np.tensordot(matrix, tensor, axes=(-1,axis))
|
tmp = np.tensordot(matrix, tensor, axes=(-1,axis))
|
||||||
return np.moveaxis(tmp, 0, axis)
|
return np.moveaxis(tmp, 0, axis)
|
||||||
|
|
||||||
|
@jit
|
||||||
def apply_ndmatrix_left(matrix,tensor,axes):
|
def apply_ndmatrix_left(matrix,tensor,axes):
|
||||||
"""
|
"""
|
||||||
Generalized apply_matrix_left, the matrix can have more (2N) abstract dimensions,
|
Generalized apply_matrix_left, the matrix can have more (2N) abstract dimensions,
|
||||||
|
@ -1095,7 +1130,7 @@ def apply_ndmatrix_left(matrix,tensor,axes):
|
||||||
# Array simulations
|
# Array simulations
|
||||||
####################
|
####################
|
||||||
|
|
||||||
|
@jit
|
||||||
def nelem2lMax(nelem):
|
def nelem2lMax(nelem):
|
||||||
"""
|
"""
|
||||||
Auxiliary inverse function to nelem(lMax) = (lMax + 2) * lMax. Returns 0 if
|
Auxiliary inverse function to nelem(lMax) = (lMax + 2) * lMax. Returns 0 if
|
||||||
|
@ -1151,6 +1186,7 @@ def scatter_plane_wave(omega, epsilon_b, positions, Tmatrices, k_dirs, E_0s, #sa
|
||||||
pass
|
pass
|
||||||
|
|
||||||
import warnings
|
import warnings
|
||||||
|
@jit(u=True)
|
||||||
def scatter_plane_wave_rectarray(omega, epsilon_b, xN, yN, xd, yd, TMatrices, k_dirs, E_0s,
|
def scatter_plane_wave_rectarray(omega, epsilon_b, xN, yN, xd, yd, TMatrices, k_dirs, E_0s,
|
||||||
return_pq_0 = False, return_pq= False, return_xy = False, watch_time = False):
|
return_pq_0 = False, return_pq= False, return_xy = False, watch_time = False):
|
||||||
"""
|
"""
|
||||||
|
@ -1382,6 +1418,7 @@ def scatter_plane_wave_rectarray(omega, epsilon_b, xN, yN, xd, yd, TMatrices, k_
|
||||||
|
|
||||||
|
|
||||||
import warnings
|
import warnings
|
||||||
|
@jit(u=True)
|
||||||
def scatter_constmultipole_rectarray(omega, epsilon_b, xN, yN, xd, yd, TMatrices, pq_0_c = 1,
|
def scatter_constmultipole_rectarray(omega, epsilon_b, xN, yN, xd, yd, TMatrices, pq_0_c = 1,
|
||||||
return_pq= False, return_xy = False, watch_time = False):
|
return_pq= False, return_xy = False, watch_time = False):
|
||||||
"""
|
"""
|
||||||
|
|
2
setup.py
2
setup.py
|
@ -12,7 +12,7 @@ qpms_c = Extension('qpms_c',
|
||||||
sources = ['qpms/qpms_c.pyx'])
|
sources = ['qpms/qpms_c.pyx'])
|
||||||
|
|
||||||
setup(name='qpms',
|
setup(name='qpms',
|
||||||
version = "0.1.2",
|
version = "0.1.3",
|
||||||
packages=['qpms'],
|
packages=['qpms'],
|
||||||
# setup_requires=['setuptools_cython'],
|
# setup_requires=['setuptools_cython'],
|
||||||
install_requires=['cython>=0.21','quaternion','spherical_functions','py_gmm'],
|
install_requires=['cython>=0.21','quaternion','spherical_functions','py_gmm'],
|
||||||
|
|
Loading…
Reference in New Issue