Multiple minimum singular value support
Former-commit-id: c8351b2b509d5887bcde06fadcfb21c3f79a0054
This commit is contained in:
parent
a3dec16ee3
commit
2ff17ba650
|
@ -19,6 +19,7 @@ parser.add_argument('--griddir', action='store', required=True, help='Path to th
|
||||||
#sizepar = parser.add_mutually_exclusive_group(required=True)
|
#sizepar = parser.add_mutually_exclusive_group(required=True)
|
||||||
parser.add_argument('--hexside', action='store', type=float, required=True, help='Lattice hexagon size length')
|
parser.add_argument('--hexside', action='store', type=float, required=True, help='Lattice hexagon size length')
|
||||||
parser.add_argument('--output', action='store', help='Path to output PDF')
|
parser.add_argument('--output', action='store', help='Path to output PDF')
|
||||||
|
parser.add_argument('--nSV', action='store', metavar='N', type=int, default=1, help='Store and draw N minimun singular values')
|
||||||
parser.add_argument('--background_permittivity', action='store', type=float, default=1., help='Background medium relative permittivity (default 1)')
|
parser.add_argument('--background_permittivity', action='store', type=float, default=1., help='Background medium relative permittivity (default 1)')
|
||||||
parser.add_argument('--sparse', action='store', type=int, help='Skip frequencies for preview')
|
parser.add_argument('--sparse', action='store', type=int, help='Skip frequencies for preview')
|
||||||
parser.add_argument('--eVmax', action='store', help='Skip frequencies above this value')
|
parser.add_argument('--eVmax', action='store', help='Skip frequencies above this value')
|
||||||
|
@ -58,6 +59,7 @@ kdensity = pargs.kdensity
|
||||||
minfreq = pargs.eVmin*eV/hbar if pargs.eVmin else None
|
minfreq = pargs.eVmin*eV/hbar if pargs.eVmin else None
|
||||||
maxfreq = pargs.eVmax*eV/hbar if pargs.eVmax else None
|
maxfreq = pargs.eVmax*eV/hbar if pargs.eVmax else None
|
||||||
skipfreq = pargs.sparse if pargs.sparse else None
|
skipfreq = pargs.sparse if pargs.sparse else None
|
||||||
|
svn = pargs.nSV
|
||||||
|
|
||||||
# TODO multiplier operation definitions and parsing
|
# TODO multiplier operation definitions and parsing
|
||||||
#factor13inc = 10
|
#factor13inc = 10
|
||||||
|
@ -92,6 +94,9 @@ print(ops)
|
||||||
import time
|
import time
|
||||||
begtime=time.time()
|
begtime=time.time()
|
||||||
|
|
||||||
|
from matplotlib.path import Path
|
||||||
|
import matplotlib.patches as patches
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
import qpms
|
import qpms
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import os, sys, warnings, math
|
import os, sys, warnings, math
|
||||||
|
@ -324,8 +329,8 @@ for trfile in os.scandir(translations_dir):
|
||||||
|
|
||||||
TMatrices_om = TMatrices_interp(omega)
|
TMatrices_om = TMatrices_interp(omega)
|
||||||
|
|
||||||
minsvTElist = np.full((klist.shape[0]),np.nan)
|
minsvTElist = np.full((klist.shape[0], svn),np.nan)
|
||||||
minsvTMlist = np.full((klist.shape[0]),np.nan)
|
minsvTMlist = np.full((klist.shape[0], svn),np.nan)
|
||||||
leftmatrixlist = np.full((klist.shape[0],2,2,nelem,2,2,nelem),np.nan,dtype=complex)
|
leftmatrixlist = np.full((klist.shape[0],2,2,nelem,2,2,nelem),np.nan,dtype=complex)
|
||||||
isNaNlist = np.zeros((klist.shape[0]), dtype=bool)
|
isNaNlist = np.zeros((klist.shape[0]), dtype=bool)
|
||||||
|
|
||||||
|
@ -373,8 +378,14 @@ for trfile in os.scandir(translations_dir):
|
||||||
leftmatrixlist_s = np.reshape(leftmatrixlist,(klist.shape[0], 2*2*nelem,2*2*nelem))[nnlist]
|
leftmatrixlist_s = np.reshape(leftmatrixlist,(klist.shape[0], 2*2*nelem,2*2*nelem))[nnlist]
|
||||||
leftmatrixlist_TE = leftmatrixlist_s[np.ix_(np.arange(leftmatrixlist_s.shape[0]),TEč,TEč)]
|
leftmatrixlist_TE = leftmatrixlist_s[np.ix_(np.arange(leftmatrixlist_s.shape[0]),TEč,TEč)]
|
||||||
leftmatrixlist_TM = leftmatrixlist_s[np.ix_(np.arange(leftmatrixlist_s.shape[0]),TMč,TMč)]
|
leftmatrixlist_TM = leftmatrixlist_s[np.ix_(np.arange(leftmatrixlist_s.shape[0]),TMč,TMč)]
|
||||||
minsvTElist[nnlist] = np.amin(np.linalg.svd(leftmatrixlist_TE, compute_uv=False), axis=-1)
|
svarr = np.linalg.svd(leftmatrixlist_TE, compute_uv=False)
|
||||||
minsvTMlist[nnlist] = np.amin(np.linalg.svd(leftmatrixlist_TM, compute_uv=False), axis=-1)
|
argsortlist = np.argsort(svarr, axis=-1)[...,:svn]
|
||||||
|
minsvTElist[nnlist] = svarr[argsortlist]
|
||||||
|
#minsvTElist[nnlist] = np.amin(np.linalg.svd(leftmatrixlist_TE, compute_uv=False), axis=-1)
|
||||||
|
svarr = np.linalg.svd(leftmatrixlist_TM, compute_uv=False)
|
||||||
|
argsortlist = np.argsort(svarr, axis=-1)[...,:svn]
|
||||||
|
minsvTMlist[nnlist] = svarr[argsortlist]
|
||||||
|
#minsvTMlist[nnlist] = np.amin(np.linalg.svd(leftmatrixlist_TM, compute_uv=False), axis=-1)
|
||||||
minsvTMlistlist.append(minsvTMlist)
|
minsvTMlistlist.append(minsvTMlist)
|
||||||
minsvTElistlist.append(minsvTElist)
|
minsvTElistlist.append(minsvTElist)
|
||||||
|
|
||||||
|
@ -393,76 +404,71 @@ omegalist = omegalist[omegaorder]
|
||||||
minsvTElistarr = minsvTElistarr[omegaorder]
|
minsvTElistarr = minsvTElistarr[omegaorder]
|
||||||
minsvTMlistarr = minsvTMlistarr[omegaorder]
|
minsvTMlistarr = minsvTMlistarr[omegaorder]
|
||||||
|
|
||||||
omlist = np.broadcast_to(omegalist[:,nx], minsvTElistarr.shape)
|
omlist = np.broadcast_to(omegalist[:,nx], minsvTElistarr[...,0].shape)
|
||||||
kxmlarr = np.broadcast_to(kxmaplist[nx,:], minsvTElistarr.shape)
|
kxmlarr = np.broadcast_to(kxmaplist[nx,:], minsvTElistarr[...,0].shape)
|
||||||
klist = np.concatenate((k0Mlist,kMK1list,kK10list,k0K2list,kK2Mlist), axis=0)
|
klist = np.concatenate((k0Mlist,kMK1list,kK10list,k0K2list,kK2Mlist), axis=0)
|
||||||
|
|
||||||
|
|
||||||
# In[ ]:
|
# In[ ]:
|
||||||
|
for minN in range(svn):
|
||||||
|
f, ax = plt.subplots(1, figsize=(20,15))
|
||||||
|
sc = ax.scatter(kxmlarr, omlist/eV*hbar, c = np.sqrt(minsvTMlistarr[...,minN]), s =40, lw=0)
|
||||||
|
ax.plot(kxmaplist, np.linalg.norm(klist,axis=-1)*cdn/eV*hbar, '-',
|
||||||
|
kxmaplist, np.linalg.norm(klist+B1, axis=-1)*cdn/eV*hbar, '-',
|
||||||
|
kxmaplist, np.linalg.norm(klist+B2, axis=-1)*cdn/eV*hbar, '-',
|
||||||
|
kxmaplist, np.linalg.norm(klist-B2, axis=-1)*cdn/eV*hbar, '-',
|
||||||
|
kxmaplist, np.linalg.norm(klist-B1, axis=-1)*cdn/eV*hbar, '-',
|
||||||
|
kxmaplist, np.linalg.norm(klist+B2-B1, axis=-1)*cdn/eV*hbar, '-',
|
||||||
|
kxmaplist, np.linalg.norm(klist-B2+B1, axis=-1)*cdn/eV*hbar, '-',
|
||||||
|
kxmaplist, np.linalg.norm(klist-B2-B1, axis=-1)*cdn/eV*hbar, '-',
|
||||||
|
kxmaplist, np.linalg.norm(klist+B2+B1, axis=-1)*cdn/eV*hbar, '-',
|
||||||
|
kxmaplist, np.linalg.norm(klist-2*B1, axis=-1)*cdn/eV*hbar, '-',
|
||||||
|
kxmaplist, np.linalg.norm(klist-2*B2, axis=-1)*cdn/eV*hbar, '-',
|
||||||
|
kxmaplist, np.linalg.norm(klist-2*B2-B1, axis=-1)*cdn/eV*hbar, '-',
|
||||||
|
kxmaplist, np.linalg.norm(klist-2*B1-B2, axis=-1)*cdn/eV*hbar, '-',
|
||||||
|
kxmaplist, np.linalg.norm(klist-2*B1-2*B2, axis=-1)*cdn/eV*hbar, '-',
|
||||||
|
# kxmaplist, np.linalg.norm(klist+2*B2-B1, axis=-1)*cdn, '-',
|
||||||
|
# kxmaplist, np.linalg.norm(klist+2*B1-B2, axis=-1)*cdn, '-',
|
||||||
|
)
|
||||||
|
ax.set_xlim([np.min(kxmlarr),np.max(kxmlarr)])
|
||||||
|
#ax.set_ylim([2.15,2.30])
|
||||||
|
ax.set_ylim([np.min(omlist/eV*hbar),np.max(omlist/eV*hbar)])
|
||||||
|
ax.set_xticks([0, kxmaplist[len(k0Mlist)-1], kxmaplist[len(k0Mlist)+len(kMK1list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)+len(k0K2list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)+len(k0K2list)+len(kK2Mlist)-1]])
|
||||||
|
ax.set_xticklabels(['Γ', 'M', 'K', 'Γ', 'K\'','M'])
|
||||||
|
f.colorbar(sc)
|
||||||
|
|
||||||
from matplotlib.path import Path
|
pdf.savefig(f)
|
||||||
import matplotlib.patches as patches
|
|
||||||
f, ax = plt.subplots(1, figsize=(20,15))
|
|
||||||
sc = ax.scatter(kxmlarr, omlist/eV*hbar, c = np.sqrt(minsvTMlistarr), s =40, lw=0)
|
|
||||||
ax.plot(kxmaplist, np.linalg.norm(klist,axis=-1)*cdn/eV*hbar, '-',
|
|
||||||
kxmaplist, np.linalg.norm(klist+B1, axis=-1)*cdn/eV*hbar, '-',
|
|
||||||
kxmaplist, np.linalg.norm(klist+B2, axis=-1)*cdn/eV*hbar, '-',
|
|
||||||
kxmaplist, np.linalg.norm(klist-B2, axis=-1)*cdn/eV*hbar, '-',
|
|
||||||
kxmaplist, np.linalg.norm(klist-B1, axis=-1)*cdn/eV*hbar, '-',
|
|
||||||
kxmaplist, np.linalg.norm(klist+B2-B1, axis=-1)*cdn/eV*hbar, '-',
|
|
||||||
kxmaplist, np.linalg.norm(klist-B2+B1, axis=-1)*cdn/eV*hbar, '-',
|
|
||||||
kxmaplist, np.linalg.norm(klist-B2-B1, axis=-1)*cdn/eV*hbar, '-',
|
|
||||||
kxmaplist, np.linalg.norm(klist+B2+B1, axis=-1)*cdn/eV*hbar, '-',
|
|
||||||
kxmaplist, np.linalg.norm(klist-2*B1, axis=-1)*cdn/eV*hbar, '-',
|
|
||||||
kxmaplist, np.linalg.norm(klist-2*B2, axis=-1)*cdn/eV*hbar, '-',
|
|
||||||
kxmaplist, np.linalg.norm(klist-2*B2-B1, axis=-1)*cdn/eV*hbar, '-',
|
|
||||||
kxmaplist, np.linalg.norm(klist-2*B1-B2, axis=-1)*cdn/eV*hbar, '-',
|
|
||||||
kxmaplist, np.linalg.norm(klist-2*B1-2*B2, axis=-1)*cdn/eV*hbar, '-',
|
|
||||||
# kxmaplist, np.linalg.norm(klist+2*B2-B1, axis=-1)*cdn, '-',
|
|
||||||
# kxmaplist, np.linalg.norm(klist+2*B1-B2, axis=-1)*cdn, '-',
|
|
||||||
)
|
|
||||||
ax.set_xlim([np.min(kxmlarr),np.max(kxmlarr)])
|
|
||||||
#ax.set_ylim([2.15,2.30])
|
|
||||||
ax.set_ylim([np.min(omlist/eV*hbar),np.max(omlist/eV*hbar)])
|
|
||||||
ax.set_xticks([0, kxmaplist[len(k0Mlist)-1], kxmaplist[len(k0Mlist)+len(kMK1list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)+len(k0K2list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)+len(k0K2list)+len(kK2Mlist)-1]])
|
|
||||||
ax.set_xticklabels(['Γ', 'M', 'K', 'Γ', 'K\'','M'])
|
|
||||||
f.colorbar(sc)
|
|
||||||
|
|
||||||
pdf.savefig(f)
|
|
||||||
|
|
||||||
|
|
||||||
# In[ ]:
|
# In[ ]:
|
||||||
|
|
||||||
import matplotlib.pyplot as plt
|
f, ax = plt.subplots(1, figsize=(20,15))
|
||||||
from matplotlib.path import Path
|
sc = ax.scatter(kxmlarr, omlist/eV*hbar, c = np.sqrt(minsvTElistarr[...,minN]), s =40, lw=0)
|
||||||
import matplotlib.patches as patches
|
ax.plot(kxmaplist, np.linalg.norm(klist,axis=-1)*cdn/eV*hbar, '-',
|
||||||
f, ax = plt.subplots(1, figsize=(20,15))
|
kxmaplist, np.linalg.norm(klist+B1, axis=-1)*cdn/eV*hbar, '-',
|
||||||
sc = ax.scatter(kxmlarr, omlist/eV*hbar, c = np.sqrt(minsvTElistarr), s =40, lw=0)
|
kxmaplist, np.linalg.norm(klist+B2, axis=-1)*cdn/eV*hbar, '-',
|
||||||
ax.plot(kxmaplist, np.linalg.norm(klist,axis=-1)*cdn/eV*hbar, '-',
|
kxmaplist, np.linalg.norm(klist-B2, axis=-1)*cdn/eV*hbar, '-',
|
||||||
kxmaplist, np.linalg.norm(klist+B1, axis=-1)*cdn/eV*hbar, '-',
|
kxmaplist, np.linalg.norm(klist-B1, axis=-1)*cdn/eV*hbar, '-',
|
||||||
kxmaplist, np.linalg.norm(klist+B2, axis=-1)*cdn/eV*hbar, '-',
|
kxmaplist, np.linalg.norm(klist+B2-B1, axis=-1)*cdn/eV*hbar, '-',
|
||||||
kxmaplist, np.linalg.norm(klist-B2, axis=-1)*cdn/eV*hbar, '-',
|
kxmaplist, np.linalg.norm(klist-B2+B1, axis=-1)*cdn/eV*hbar, '-',
|
||||||
kxmaplist, np.linalg.norm(klist-B1, axis=-1)*cdn/eV*hbar, '-',
|
kxmaplist, np.linalg.norm(klist-B2-B1, axis=-1)*cdn/eV*hbar, '-',
|
||||||
kxmaplist, np.linalg.norm(klist+B2-B1, axis=-1)*cdn/eV*hbar, '-',
|
kxmaplist, np.linalg.norm(klist+B2+B1, axis=-1)*cdn/eV*hbar, '-',
|
||||||
kxmaplist, np.linalg.norm(klist-B2+B1, axis=-1)*cdn/eV*hbar, '-',
|
kxmaplist, np.linalg.norm(klist-2*B1, axis=-1)*cdn/eV*hbar, '-',
|
||||||
kxmaplist, np.linalg.norm(klist-B2-B1, axis=-1)*cdn/eV*hbar, '-',
|
kxmaplist, np.linalg.norm(klist-2*B2, axis=-1)*cdn/eV*hbar, '-',
|
||||||
kxmaplist, np.linalg.norm(klist+B2+B1, axis=-1)*cdn/eV*hbar, '-',
|
kxmaplist, np.linalg.norm(klist-2*B2-B1, axis=-1)*cdn/eV*hbar, '-',
|
||||||
kxmaplist, np.linalg.norm(klist-2*B1, axis=-1)*cdn/eV*hbar, '-',
|
kxmaplist, np.linalg.norm(klist-2*B1-B2, axis=-1)*cdn/eV*hbar, '-',
|
||||||
kxmaplist, np.linalg.norm(klist-2*B2, axis=-1)*cdn/eV*hbar, '-',
|
kxmaplist, np.linalg.norm(klist-2*B1-2*B2, axis=-1)*cdn/eV*hbar, '-',
|
||||||
kxmaplist, np.linalg.norm(klist-2*B2-B1, axis=-1)*cdn/eV*hbar, '-',
|
# kxmaplist, np.linalg.norm(klist+2*B2-B1, axis=-1)*cdn, '-',
|
||||||
kxmaplist, np.linalg.norm(klist-2*B1-B2, axis=-1)*cdn/eV*hbar, '-',
|
# kxmaplist, np.linalg.norm(klist+2*B1-B2, axis=-1)*cdn, '-',
|
||||||
kxmaplist, np.linalg.norm(klist-2*B1-2*B2, axis=-1)*cdn/eV*hbar, '-',
|
)
|
||||||
# kxmaplist, np.linalg.norm(klist+2*B2-B1, axis=-1)*cdn, '-',
|
ax.set_xlim([np.min(kxmlarr),np.max(kxmlarr)])
|
||||||
# kxmaplist, np.linalg.norm(klist+2*B1-B2, axis=-1)*cdn, '-',
|
#ax.set_ylim([2.15,2.30])
|
||||||
)
|
ax.set_ylim([np.min(omlist/eV*hbar),np.max(omlist/eV*hbar)])
|
||||||
ax.set_xlim([np.min(kxmlarr),np.max(kxmlarr)])
|
ax.set_xticks([0, kxmaplist[len(k0Mlist)-1], kxmaplist[len(k0Mlist)+len(kMK1list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)+len(k0K2list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)+len(k0K2list)+len(kK2Mlist)-1]])
|
||||||
#ax.set_ylim([2.15,2.30])
|
ax.set_xticklabels(['Γ', 'M', 'K', 'Γ', 'K\'','M'])
|
||||||
ax.set_ylim([np.min(omlist/eV*hbar),np.max(omlist/eV*hbar)])
|
f.colorbar(sc)
|
||||||
ax.set_xticks([0, kxmaplist[len(k0Mlist)-1], kxmaplist[len(k0Mlist)+len(kMK1list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)+len(k0K2list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)+len(k0K2list)+len(kK2Mlist)-1]])
|
|
||||||
ax.set_xticklabels(['Γ', 'M', 'K', 'Γ', 'K\'','M'])
|
|
||||||
f.colorbar(sc)
|
|
||||||
|
|
||||||
pdf.savefig(f)
|
pdf.savefig(f)
|
||||||
pdf.close()
|
pdf.close()
|
||||||
|
|
||||||
print(time.strftime("%H.%M:%S",time.gmtime(time.time()-begtime)))
|
print(time.strftime("%H.%M:%S",time.gmtime(time.time()-begtime)))
|
||||||
|
|
Loading…
Reference in New Issue