Koefficient A a testy. Kompiluje, většinou funguje, někdy nan

Former-commit-id: 3303493088dc8edca027fb93d49d62166e71544e
This commit is contained in:
Marek Nečada 2017-04-12 14:17:07 +03:00
parent b8eff3eb77
commit 34940fc7e9
8 changed files with 204 additions and 9 deletions

View File

@ -1173,6 +1173,7 @@ static inline int q_max(int m, int n, int mu, int nu) {
return MIN(n, MIN(nu,(n+nu-abs(m+mu))/2));
}
/* THIS THING IS TOTALLY WRONG
int gaunt(int m, int n, int mu, int nu, double *v) {
int err = 0;
int qmax = q_max(m,n,mu,nu);
@ -1181,6 +1182,7 @@ int gaunt(int m, int n, int mu, int nu, double *v) {
gaunt_xu(m, n, mu, nu, qmax, v, &err);
return err;
}
*/
#ifdef GAUNTTEST

View File

@ -2,12 +2,12 @@
#define GAUNT_H
#include <stdlib.h>
#define _GAUNT_H_MIN(x,y) (((x) > (y) ? (y) : (x))
#define _GAUNT_H_MIN(x,y) (((x) > (y)) ? (y) : (x))
static inline int gaunt_q_max(int m, int n, int mu, int nu) {
return _GAUNT_H_MIN(n, _GAUNT_H_MIN(nu, n+nu-abs(m+mu)));
}
#undef _GAUNT_H_MIN
void gaunt_xu(int m, int n, int mu, int nu, int qmax, double *v_aq, int *err);
int gaunt(int m, int n, int mu, int nu, double *v_aq);
//int gaunt(int m, int n, int mu, int nu, double *v_aq);
#endif //GAUNT_H

54
qpms/gsltest.c Normal file
View File

@ -0,0 +1,54 @@
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <gsl/gsl_sf_legendre.h>
int main(int argc, char **argv) {
int lmax;
int scanned;
double x;
while (EOF != (scanned = scanf("%d %lf", &lmax, &x))) {
if (scanned != 2) continue;
size_t as = gsl_sf_legendre_array_n(lmax);
double *r_none = calloc(as, sizeof(double));
double *d_none = calloc(as, sizeof(double));
double *r_schmidt = calloc(as, sizeof(double));
double *d_schmidt = calloc(as, sizeof(double));
double *r_spharm = calloc(as, sizeof(double));
double *d_spharm = calloc(as, sizeof(double));
double *r_full = calloc(as, sizeof(double));
double *d_full = calloc(as, sizeof(double));
if( 0
|| gsl_sf_legendre_deriv_alt_array_e(GSL_SF_LEGENDRE_NONE,lmax,x,-1,r_none,d_none)
|| gsl_sf_legendre_deriv_alt_array_e(GSL_SF_LEGENDRE_SCHMIDT,lmax,x,-1,r_schmidt,d_schmidt)
|| gsl_sf_legendre_deriv_alt_array_e(GSL_SF_LEGENDRE_SPHARM,lmax,x,-1,r_spharm,d_spharm)
|| gsl_sf_legendre_deriv_alt_array_e(GSL_SF_LEGENDRE_FULL,lmax,x,-1,r_full,d_full)
) fprintf(stderr, "Something gone wrong for lmax = %d, x = %.15e!\n", lmax, x);
for (int l = 0; l <= lmax; ++l)
for (int m = 0; m <= l; ++m){
size_t i = gsl_sf_legendre_array_index(l,m);
printf("P(%d,%d)\t%.16e\t%.16e\t%.16e\t%.16e\n", l, m,
r_none[i], r_schmidt[i], r_spharm[i], r_full[i]);
printf("dP(%d,%d)\t%.16e\t%.16e\t%.16e\t%.16e\n", l, m,
d_none[i], d_schmidt[i], d_spharm[i], d_full[i]);
}
free(r_none);
free(d_none);
free(r_schmidt);
free(d_schmidt);
free(r_spharm);
free(d_spharm);
free(r_full);
free(d_full);
}
return 0;
}

25
qpms/test_translations.c Normal file
View File

@ -0,0 +1,25 @@
#include "translations.h"
#include <stdio.h>
//#include <math.h>
#include <complex.h>
typedef struct {
int m, n, mu, nu;
sph_t kdlj;
qpms_bessel_t J;
complex double result_A, result_B;
} testcase_single_trans_t;
testcase_single_trans_t testcases_Taylor[] = {
#include "testcases_taylor"
};
int main() {
for(testcase_single_trans_t *tc = testcases_Taylor; tc->J != QPMS_BESSEL_UNDEF; tc++) {
complex double A = qpms_trans_single_A_Taylor(tc->m, tc->n, tc->mu, tc->nu, tc->kdlj, true, tc->J);
printf("m=%d, n=%d, mu=%d, nu=%d, relerr=%.16f\n", tc->m,tc->n,tc->mu,tc->nu,
cabs(tc->result_A - A)/((cabs(A) < cabs(tc->result_A)) ? cabs(A) : cabs(tc->result_A)));
}
}

View File

@ -0,0 +1 @@
2b61a18b6426306ba80a50ee30339651313fc44f

View File

@ -1,17 +1,105 @@
#include <math.h>
#include "gaunt.h"
#include "translations.h"
#include <stdbool.h>
#include <gsl/gsl_sf_legendre.h>
#include <gsl/gsl_sf_bessel.h>
#include <assert.h>
static const double sqrtpi = 1.7724538509055160272981674833411451827975494561223871;
//static const double ln2 = 0.693147180559945309417232121458176568075500134360255254120;
// Associated Legendre polynomial at zero argument (DLMF 14.5.1)
double legendre0(int m, int n) {
return pow(2,m) * sqrtpi / gamma(.5*n - .5*m + .5) / gamma(.5*n-.5*m);
double qpms_legendre0(int m, int n) {
return pow(2,m) * sqrtpi / tgamma(.5*n - .5*m + .5) / tgamma(.5*n-.5*m);
}
static inline int min1pow(int x) {
return (x % 2) ? -1 : 1;
}
static inline complex double ipow(int x) {
return cpow(I, x);
}
// Derivative of associated Legendre polynomial at zero argument (DLMF 14.5.2)
double legendreD0(int m, int n) {
return -2 * legendre0(m, n);
double qpms_legendreD0(int m, int n) {
return -2 * qpms_legendre0(m, n);
}
int qpms_sph_bessel_array(qpms_bessel_t typ, int lmax, double x, complex double *result_array) {
int retval;
double tmparr[lmax+1];
switch(typ) {
case QPMS_BESSEL_REGULAR:
retval = gsl_sf_bessel_jl_steed_array(lmax, x, tmparr);
for (int l = 0; l <= lmax; ++l) result_array[l] = tmparr[l];
return retval;
break;
case QPMS_BESSEL_SINGULAR: //FIXME: is this precise enough? Would it be better to do it one-by-one?
retval = gsl_sf_bessel_yl_array(lmax,x,tmparr);
for (int l = 0; l <= lmax; ++l) result_array[l] = tmparr[l];
return retval;
break;
case QPMS_HANKEL_PLUS:
case QPMS_HANKEL_MINUS:
retval = gsl_sf_bessel_jl_steed_array(lmax, x, tmparr);
for (int l = 0; l <= lmax; ++l) result_array[l] = tmparr[l];
if(retval) return retval;
retval = gsl_sf_bessel_yl_array(lmax, x, tmparr);
if (typ==QPMS_HANKEL_PLUS)
for (int l = 0; l <= lmax; ++l) result_array[l] *= I * tmparr[l];
else
for (int l = 0; l <= lmax; ++l) result_array[l] *=-I * tmparr[l];
return retval;
break;
default:
abort();
//return GSL_EDOM;
}
assert(0);
}
complex double qpms_trans_single_A_Taylor(int m, int n, int mu, int nu, sph_t kdlj,
bool r_ge_d, qpms_bessel_t J) { // TODO make J enum
if(r_ge_d) J = QPMS_BESSEL_REGULAR;
double exponent=(lgamma(2*n+1)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2)
+lgamma(n+nu+m-mu+1)-lgamma(n-m+1)-lgamma(nu+mu+1)
+lgamma(n+nu+1) - lgamma(2*(n+nu)+1));
double costheta = cos(kdlj.theta);
int qmax = gaunt_q_max(-m,n,mu,nu); // nemá tu být +m?
// N.B. -m !!!!!!
double a1q[qmax+1];
int err;
gaunt_xu(-m,n,mu,nu,qmax,a1q,&err);
double a1q0 = a1q[0];
if (err) abort();
//double *leg = malloc(sizeof(double)*gsl_sf_legendre_array_n(n+nu));
//if (!leg) abort();
double leg[gsl_sf_legendre_array_n(n+nu)];
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu,costheta,-1,leg)) abort();
complex double bes[n+nu+1];
if (qpms_sph_bessel_array(J, n+nu, kdlj.r, bes)) abort();
complex double sum = 0;
for(int q = 0; q <= qmax; ++q) {
int p = n+nu-2*q;
double a1q_n = a1q[q] / a1q0;
int Pp_order = mu-m;
double Pp = leg[gsl_sf_legendre_array_index(p, abs(Pp_order))];
if (Pp_order < 0) Pp *= min1pow(mu-m) * exp(lgamma(1+p+Pp_order)-lgamma(1+p-Pp_order));
complex double zp = bes[p];
complex double summandq = (n*(n+1) + nu*(nu+1) - p*(p+1)) * min1pow(q) * a1q_n * zp * Pp;
sum += summandq;
}
//free(leg);
//free(bes);
complex double presum = exp(exponent);
presum *= cexp(I*(mu-m)*kdlj.phi) * min1pow(m) * ipow(nu+n) / (4*n);
complex double prenormratio = ipow(nu-n) * sqrt(((2.*nu+1)/(2.*n+1))* exp(
lgamma(n+m+1)-lgamma(n-m+1)+lgamma(nu-mu+1)-lgamma(nu+mu+1)));
return (presum / prenormratio) * sum;
}

24
qpms/translations.h Normal file
View File

@ -0,0 +1,24 @@
#ifndef QPMS_TRANSLATIONS_H
#define QPMS_TRANSLATIONS_H
#include "vectors.h"
#include <complex.h>
#include <stdbool.h>
double qpms_legendre0(int m, int n);
double qpms_legendred0(int m, int n);
typedef enum {
QPMS_BESSEL_REGULAR = 1, // regular function j
QPMS_BESSEL_SINGULAR = 2, // singular function y
QPMS_HANKEL_PLUS = 3, // hankel function h1 = j + I*y
QPMS_HANKEL_MINUS = 4, // hankel function h2 = j - I*y
QPMS_BESSEL_UNDEF = 0
} qpms_bessel_t;
int qpms_sph_bessel_array(qpms_bessel_t typ, int lmax, double x, complex double *result_array);
complex double qpms_trans_single_A_Taylor(int m, int n, int mu, int nu, sph_t kdlj,
bool r_ge_d, qpms_bessel_t J);
#endif // QPMS_TRANSLATIONS_H

View File

@ -1,6 +1,7 @@
#ifndef VECTORS_H
#define VECTORS_H
#include <math.h>
#define M_PI_2 (1.570796326794896619231321691639751442098584699687552910487)
typedef struct {
double x, y, z;
@ -21,7 +22,7 @@ typedef struct {
//static inline double vectors_h_sq(double x) {return x*x;}
static inline cart3norm(cart3_t v) {
static inline double cart3norm(cart3_t v) {
return sqrt(v.x*v.x + v.y*v.y + v.z*v.z);
}
@ -33,8 +34,8 @@ static inline sph_t cart2sph(cart3_t cart) {
return sph;
}
static inline cart_t sph2cart(sph_t sph) {
cart_t cart;
static inline cart3_t sph2cart(sph_t sph) {
cart3_t cart;
double sin_th = sin(sph.theta);
cart.x = sph.r * sin_th * cos(sph.phi);
cart.y = sph.r * sin_th * sin(sph.phi);