Point group transformation of VSWFs, t-matrices.
Former-commit-id: 07695e5d1e8969a72fa9068d85ca359b4ebf4512
This commit is contained in:
parent
91e2ae9e4d
commit
36cc152166
|
@ -1,5 +1,5 @@
|
|||
#LyX 2.4 created this file. For more info see https://www.lyx.org/
|
||||
\lyxformat 583
|
||||
\lyxformat 584
|
||||
\begin_document
|
||||
\begin_header
|
||||
\save_transient_properties true
|
||||
|
@ -734,6 +734,21 @@ Concrete comparison with other methods.
|
|||
Fix and unify notation (mainly indices) in infinite lattices section.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Carefully check the transformation directions in sec.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "sec:Symmetries"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset CommandInset include
|
||||
LatexCommand include
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
#LyX 2.4 created this file. For more info see https://www.lyx.org/
|
||||
\lyxformat 583
|
||||
\lyxformat 584
|
||||
\begin_document
|
||||
\begin_header
|
||||
\save_transient_properties true
|
||||
|
@ -289,20 +289,20 @@ outgoing
|
|||
|
||||
, respectively, defined as follows:
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\vswfrtlm 1lm\left(k\vect r\right) & =j_{l}\left(kr\right)\vsh 1lm\left(\uvec r\right),\\
|
||||
\vswfrtlm 2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krj_{l}\left(kr\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(kr\right)}{kr}\vsh 3lm\left(\uvec r\right),
|
||||
\end{align*}
|
||||
\begin{align}
|
||||
\vswfrtlm 1lm\left(k\vect r\right) & =j_{l}\left(kr\right)\vsh 1lm\left(\uvec r\right),\nonumber \\
|
||||
\vswfrtlm 2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krj_{l}\left(kr\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(kr\right)}{kr}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF regular}
|
||||
\end{align}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\vswfouttlm 1lm\left(k\vect r\right) & =h_{l}^{\left(1\right)}\left(kr\right)\vsh 1lm\left(\uvec r\right),\\
|
||||
\vswfouttlm 2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krh_{l}^{\left(1\right)}\left(kr\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{h_{l}^{\left(1\right)}\left(kr\right)}{kr}\vsh 3lm\left(\uvec r\right),\\
|
||||
& \tau=1,2;\quad l=1,2,3,\dots;\quad m=-l,-l+1,\dots,+l,
|
||||
\end{align*}
|
||||
\begin{align}
|
||||
\vswfouttlm 1lm\left(k\vect r\right) & =h_{l}^{\left(1\right)}\left(kr\right)\vsh 1lm\left(\uvec r\right),\nonumber \\
|
||||
\vswfouttlm 2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krh_{l}^{\left(1\right)}\left(kr\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{h_{l}^{\left(1\right)}\left(kr\right)}{kr}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF outgoing}\\
|
||||
& \tau=1,2;\quad l=1,2,3,\dots;\quad m=-l,-l+1,\dots,+l,\nonumber
|
||||
\end{align}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
@ -325,11 +325,11 @@ vector spherical harmonics
|
|||
\emph default
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\vsh 1lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\times\left(\vect r\ush lm\left(\uvec r\right)\right)=\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\ush lm\left(\uvec r\right)\times\vect r,\\
|
||||
\vsh 2lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}r\nabla\ush lm\left(\uvec r\right),\\
|
||||
\vsh 3lm\left(\uvec r\right) & =\uvec r\ush lm\left(\uvec r\right).
|
||||
\end{align*}
|
||||
\begin{align}
|
||||
\vsh 1lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\times\left(\vect r\ush lm\left(\uvec r\right)\right)=\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\ush lm\left(\uvec r\right)\times\vect r,\nonumber \\
|
||||
\vsh 2lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}r\nabla\ush lm\left(\uvec r\right),\nonumber \\
|
||||
\vsh 3lm\left(\uvec r\right) & =\uvec r\ush lm\left(\uvec r\right).\label{eq:vector spherical harmonics definition}
|
||||
\end{align}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
@ -517,7 +517,7 @@ doplnit frekvence a polohy
|
|||
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\vect E\left(\omega,\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\left(\rcoefftlm{\tau}lm\vswfrtlm{\tau}lm+\outcoefftlm{\tau}lm\vswfouttlm{\tau}lm\right).\label{eq:E field expansion}
|
||||
\vect E\left(\omega,\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\left(\rcoefftlm{\tau}lm\vswfrtlm{\tau}lm\left(k\vect r\right)+\outcoefftlm{\tau}lm\vswfouttlm{\tau}lm\left(k\vect r\right)\right).\label{eq:E field expansion}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
@ -603,14 +603,27 @@ noprefix "false"
|
|||
\end_inset
|
||||
|
||||
are the effective induced electric (
|
||||
\begin_inset Formula $\tau=1$
|
||||
\end_inset
|
||||
|
||||
) and magnetic (
|
||||
\begin_inset Formula $\tau=2$
|
||||
\end_inset
|
||||
|
||||
) multipole polarisation amplitudes of the scatterer.
|
||||
) and magnetic (
|
||||
\begin_inset Formula $\tau=1$
|
||||
\end_inset
|
||||
|
||||
) multipole polarisation amplitudes of the scatterer, and this is why we
|
||||
sometimes refer to the corresponding VSWFs as the electric and magnetic
|
||||
VSWFs.
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
TODO mention the pseudovector character of magnetic VSWFs.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
#LyX 2.4 created this file. For more info see https://www.lyx.org/
|
||||
\lyxformat 583
|
||||
\lyxformat 584
|
||||
\begin_document
|
||||
\begin_header
|
||||
\save_transient_properties true
|
||||
|
@ -183,6 +183,318 @@ noprefix "false"
|
|||
Finite systems
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
TODO Zkontrolovat všechny vzorečky zde!!!
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
In order to use the point group symmetries, we first need to know how they
|
||||
affect our basis functions, i.e.
|
||||
the VSWFs.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Let
|
||||
\begin_inset Formula $g$
|
||||
\end_inset
|
||||
|
||||
be a member of orthogonal group
|
||||
\begin_inset Formula $O(3)$
|
||||
\end_inset
|
||||
|
||||
, i.e.
|
||||
a 3D point rotation or reflection operation that transforms vectors in
|
||||
|
||||
\begin_inset Formula $\reals^{3}$
|
||||
\end_inset
|
||||
|
||||
with an orthogonal matrix
|
||||
\begin_inset Formula $R_{g}$
|
||||
\end_inset
|
||||
|
||||
:
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\vect r\mapsto R_{g}\vect r.
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
Spherical harmonics
|
||||
\begin_inset Formula $\ush lm$
|
||||
\end_inset
|
||||
|
||||
, being a basis the
|
||||
\begin_inset Formula $l$
|
||||
\end_inset
|
||||
|
||||
-dimensional representation of
|
||||
\begin_inset Formula $O(3)$
|
||||
\end_inset
|
||||
|
||||
, transform as
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "???"
|
||||
key "dresselhaus_group_2008"
|
||||
literal "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\ush lm\left(R_{g}\uvec r\right)=\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\ush l{m'}\left(\uvec r\right)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $D_{m,m'}^{l}\left(g\right)$
|
||||
\end_inset
|
||||
|
||||
denotes the elements of the
|
||||
\emph on
|
||||
Wigner matrix
|
||||
\emph default
|
||||
representing the operation
|
||||
\begin_inset Formula $g$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
By their definition, vector spherical harmonics
|
||||
\begin_inset Formula $\vsh 2lm,\vsh 3lm$
|
||||
\end_inset
|
||||
|
||||
transform in the same way,
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\vsh 2lm\left(R_{g}\uvec r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh 2l{m'}\left(\uvec r\right),\\
|
||||
\vsh 3lm\left(R_{g}\uvec r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh 3l{m'}\left(\uvec r\right),
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
||||
but the remaining set
|
||||
\begin_inset Formula $\vsh 1lm$
|
||||
\end_inset
|
||||
|
||||
transforms differently due to their pseudovector nature stemming from the
|
||||
cross product in their definition:
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\vsh 3lm\left(R_{g}\uvec r\right)=\sum_{m'=-l}^{l}\widetilde{D_{m,m'}^{l}}\left(g\right)\vsh 3l{m'}\left(\uvec r\right),
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $\widetilde{D_{m,m'}^{l}}\left(g\right)=D_{m,m'}^{l}\left(g\right)$
|
||||
\end_inset
|
||||
|
||||
if
|
||||
\begin_inset Formula $g$
|
||||
\end_inset
|
||||
|
||||
is a proper rotation, but for spatial inversion operation
|
||||
\begin_inset Formula $i:\vect r\mapsto-\vect r$
|
||||
\end_inset
|
||||
|
||||
we have
|
||||
\begin_inset Formula $\widetilde{D_{m,m'}^{l}}\left(i\right)=\left(-1\right)^{l+m}D_{m,m'}^{l}\left(i\right)$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
The transformation behaviour of vector spherical harmonics directly propagates
|
||||
to the spherical vector waves, cf.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:VSWF regular"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:VSWF outgoing"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
:
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\vswfouttlm 1lm\left(R_{g}\vect r\right) & =\sum_{m'=-l}^{l}\widetilde{D_{m,m'}^{l}}\left(g\right)\vswfouttlm 1l{m'}\left(\vect r\right),\\
|
||||
\vswfouttlm 2lm\left(R_{g}\vect r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vswfouttlm 2l{m'}\left(\vect r\right),
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
||||
(and analogously for the regular waves
|
||||
\begin_inset Formula $\vswfrtlm{\tau}lm$
|
||||
\end_inset
|
||||
|
||||
).
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
TODO víc obdivu.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
For convenience, we introduce the symbol
|
||||
\begin_inset Formula $D_{m,m'}^{\tau l}$
|
||||
\end_inset
|
||||
|
||||
that describes the transformation of both types (
|
||||
\begin_inset Quotes eld
|
||||
\end_inset
|
||||
|
||||
magnetic
|
||||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Quotes eld
|
||||
\end_inset
|
||||
|
||||
electric
|
||||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
) of waves at once:
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\vswfouttlm{\tau}lm\left(R_{g}\vect r\right)=\sum_{m'=-l}^{l}D_{m,m'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(\vect r\right).
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
Using these, we can express the VSWF expansion
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:E field expansion"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
of the electric field around origin in a rotated/reflected system,
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\vect E\left(\omega,R_{g}\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfrtlm{\tau}lm\left(k\vect r\right)+D_{m,m'}^{\tau l}\left(g\right)\outcoefftlm{\tau}lm\vswfouttlm{\tau}lm\left(k\vect r\right)\right),
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
which, together with the
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix definition,
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:T-matrix definition"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
can be used to obtain a
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix of a rotated or mirror-reflected particle.
|
||||
Let
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
be the
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix of an original particle; the
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix of a particle physically transformed by operation
|
||||
\begin_inset Formula $g\in O(3)$
|
||||
\end_inset
|
||||
|
||||
is then
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
check sides
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
T'_{\tau lm;\tau'l'm'}=\sum_{\mu=-l}^{l}\sum_{\mu'=-l'}^{l'}\left(D_{\mu,m}^{\tau l}\left(g\right)\right)^{*}T_{\tau l\mu;\tau'l'm'}D_{m',\mu'}^{\tau l}\left(g\right).\label{eq:T-matrix of a transformed particle}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
If the particle is symmetric (so that
|
||||
\begin_inset Formula $g$
|
||||
\end_inset
|
||||
|
||||
produces a particle indistinguishable from the original one), the
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix must remain invariant under the transformation
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:T-matrix of a transformed particle"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $T'_{\tau lm;\tau'l'm'}=T{}_{\tau lm;\tau'l'm'}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Explicit forms of these invariance properties for the most imporant point
|
||||
group symmetries can be found in
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
key "schulz_point-group_1999"
|
||||
literal "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
With these point group transformation properties in hand, we can proceed
|
||||
to rotating (or mirror-reflecting) the whole many-particle system.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Periodic systems
|
||||
\end_layout
|
||||
|
|
Loading…
Reference in New Issue