Move stuff from pointgroup.h to pointgroups.c
Former-commit-id: 70431c71975fdbe21be76cf4d28f1f59614bd577
This commit is contained in:
parent
46e82e55e2
commit
36ea30952c
|
@ -90,6 +90,203 @@ qpms_irot3_t *qpms_pg_canonical_elems(qpms_irot3_t *target,
|
|||
}
|
||||
|
||||
|
||||
/// Returns the order of a given 3D point group type.
|
||||
/** For infinite groups returns 0. */
|
||||
qpms_gmi_t qpms_pg_order(qpms_pointgroup_class cls, ///< Point group class.
|
||||
qpms_gmi_t n ///< Number of rotations around main axis (only for finite axial groups).
|
||||
) {
|
||||
if (qpms_pg_is_finite_axial(cls))
|
||||
QPMS_ENSURE(n > 0, "n must be at least 1 for finite axial groups");
|
||||
switch(cls) {
|
||||
// Axial groups
|
||||
case QPMS_PGS_CN:
|
||||
return n;
|
||||
case QPMS_PGS_S2N:
|
||||
case QPMS_PGS_CNH:
|
||||
case QPMS_PGS_CNV:
|
||||
case QPMS_PGS_DN:
|
||||
return 2*n;
|
||||
case QPMS_PGS_DND:
|
||||
case QPMS_PGS_DNH:
|
||||
return 4*n;
|
||||
|
||||
// Remaining polyhedral groups
|
||||
case QPMS_PGS_T:
|
||||
return 12;
|
||||
case QPMS_PGS_TD:
|
||||
case QPMS_PGS_TH:
|
||||
case QPMS_PGS_O:
|
||||
return 24;
|
||||
case QPMS_PGS_OH:
|
||||
return 48;
|
||||
case QPMS_PGS_I:
|
||||
return 60;
|
||||
case QPMS_PGS_IH:
|
||||
return 120;
|
||||
|
||||
// Continuous axial groups
|
||||
case QPMS_PGS_CINF:
|
||||
case QPMS_PGS_CINFH:
|
||||
case QPMS_PGS_CINFV:
|
||||
case QPMS_PGS_DINF:
|
||||
case QPMS_PGS_DINFH:
|
||||
|
||||
// Remaining continuous groups
|
||||
case QPMS_PGS_SO3:
|
||||
case QPMS_PGS_O3:
|
||||
return 0; // 0 is infinity :-)
|
||||
default:
|
||||
QPMS_WTF;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// Returns the number of canonical generators of a given 3D point group type.
|
||||
/** TODO what does it do for infinite (Lie) groups? */
|
||||
qpms_gmi_t qpms_pg_genset_size(qpms_pointgroup_class cls, ///< Point group class.
|
||||
qpms_gmi_t n ///< Number of rotations around main axis (only for axial groups).
|
||||
) {
|
||||
if (qpms_pg_is_finite_axial(cls)) {
|
||||
QPMS_ENSURE(n > 0, "n must be at least 1 for finite axial groups");
|
||||
// n = 1 needs special care:
|
||||
if (n==1)
|
||||
switch(cls) {
|
||||
case QPMS_PGS_CN: return 0; // triv.
|
||||
case QPMS_PGS_S2N: return 1; // Z_2
|
||||
case QPMS_PGS_CNH: return 1; // Dih_1
|
||||
case QPMS_PGS_CNV: return 1; // Dih_1
|
||||
case QPMS_PGS_DN: return 1; // Dih_1
|
||||
case QPMS_PGS_DND: return 2; // Dih_2
|
||||
case QPMS_PGS_DNH: return 2; // Dih_1 x Dih_1
|
||||
default: QPMS_WTF;
|
||||
}
|
||||
}
|
||||
|
||||
switch(cls) {
|
||||
// Axial groups
|
||||
case QPMS_PGS_CN: return 1; // Z_n
|
||||
case QPMS_PGS_S2N: return 1; // Z_{2n}
|
||||
case QPMS_PGS_CNH: return 2; // Z_n x Dih_1
|
||||
case QPMS_PGS_CNV: return 2; // Dih_n
|
||||
case QPMS_PGS_DN: return 2; // Dih_n
|
||||
case QPMS_PGS_DND: return 2; // Dih_2n
|
||||
case QPMS_PGS_DNH: return 3; // Dih_n x Dih_1
|
||||
|
||||
// Remaining polyhedral groups
|
||||
case QPMS_PGS_T: // return ???; // A_4
|
||||
case QPMS_PGS_TD: // return 2; // S_4
|
||||
case QPMS_PGS_TH: // A_4 x Z_2
|
||||
case QPMS_PGS_O: // S_4
|
||||
case QPMS_PGS_OH: // return 3; // S_4 x Z_2
|
||||
case QPMS_PGS_I: // A_5
|
||||
case QPMS_PGS_IH: // A_5 x Z_2
|
||||
|
||||
// Continuous axial groups
|
||||
case QPMS_PGS_CINF:
|
||||
case QPMS_PGS_CINFH:
|
||||
case QPMS_PGS_CINFV:
|
||||
case QPMS_PGS_DINF:
|
||||
case QPMS_PGS_DINFH:
|
||||
|
||||
// Remaining continuous groups
|
||||
case QPMS_PGS_SO3:
|
||||
case QPMS_PGS_O3:
|
||||
QPMS_NOT_IMPLEMENTED("Not yet implemented for this point group class.");
|
||||
default:
|
||||
QPMS_WTF;
|
||||
}
|
||||
}
|
||||
|
||||
/// Fills an array of canonical generators of a given 3D point group type.
|
||||
/** TODO what does it do for infinite (Lie) groups? */
|
||||
qpms_gmi_t qpms_pg_genset(qpms_pointgroup_class cls, ///< Point group class.
|
||||
qpms_gmi_t n, ///< Number of rotations around main axis (only for axial groups).
|
||||
qpms_irot3_t gen[] ///< Target generator array
|
||||
) {
|
||||
if (qpms_pg_is_finite_axial(cls)) {
|
||||
QPMS_ENSURE(n > 0, "n must be at least 1 for finite axial groups");
|
||||
// n = 1 needs special care:
|
||||
if (n==1)
|
||||
switch(cls) {
|
||||
case QPMS_PGS_CN:
|
||||
return 0; // triv.
|
||||
case QPMS_PGS_S2N:
|
||||
gen[0] = QPMS_IROT3_INVERSION;
|
||||
return 1; // Z_2
|
||||
case QPMS_PGS_CNH:
|
||||
gen[0] = QPMS_IROT3_ZFLIP;
|
||||
return 1; // Dih_1
|
||||
case QPMS_PGS_CNV:
|
||||
gen[0] = QPMS_IROT3_XFLIP;
|
||||
return 1; // Dih_1
|
||||
case QPMS_PGS_DN:
|
||||
gen[0] = QPMS_IROT3_XROT_PI; // CHECKME
|
||||
return 1; // Dih_1
|
||||
case QPMS_PGS_DND:
|
||||
gen[0] = QPMS_IROT3_INVERSION;
|
||||
gen[1] = QPMS_IROT3_XFLIP;
|
||||
return 2; // Dih_2
|
||||
case QPMS_PGS_DNH: // CHECKME
|
||||
gen[0] = QPMS_IROT3_ZFLIP;
|
||||
gen[1] = QPMS_IROT3_XFLIP;
|
||||
return 2; // Dih_1 x Dih_1
|
||||
default: QPMS_WTF;
|
||||
}
|
||||
}
|
||||
|
||||
switch(cls) {
|
||||
// Axial groups
|
||||
case QPMS_PGS_CN:
|
||||
gen[0] = qpms_irot3_zrot_Nk(n, 1);
|
||||
return 1; // Z_n
|
||||
case QPMS_PGS_S2N:
|
||||
gen[0].rot = qpms_quat_zrot_Nk(2*n, 1);
|
||||
gen[0].det = -1;
|
||||
return 1; // Z_{2n}
|
||||
case QPMS_PGS_CNH:
|
||||
gen[0] = qpms_irot3_zrot_Nk(n, 1);
|
||||
gen[1] = QPMS_IROT3_ZFLIP;
|
||||
return 2; // Z_n x Dih_1
|
||||
case QPMS_PGS_CNV:
|
||||
gen[0] = qpms_irot3_zrot_Nk(n, 1);
|
||||
gen[1] = QPMS_IROT3_XFLIP;
|
||||
return 2; // Dih_n
|
||||
case QPMS_PGS_DN:
|
||||
gen[0] = qpms_irot3_zrot_Nk(n, 1);
|
||||
gen[1] = QPMS_IROT3_XROT_PI;
|
||||
return 2; // Dih_n
|
||||
case QPMS_PGS_DND:
|
||||
gen[0].rot = qpms_quat_zrot_Nk(2*n, 1);
|
||||
gen[0].det = -1;
|
||||
gen[1] = QPMS_IROT3_XFLIP;
|
||||
return 2; // Dih_2n
|
||||
case QPMS_PGS_DNH:
|
||||
gen[0] = qpms_irot3_zrot_Nk(n, 1);
|
||||
gen[1] = QPMS_IROT3_ZFLIP;
|
||||
gen[2] = QPMS_IROT3_XFLIP;
|
||||
return 3; // Dih_n x Dih_1
|
||||
|
||||
// Remaining polyhedral groups
|
||||
case QPMS_PGS_T: // return ???; // A_4
|
||||
case QPMS_PGS_TD: // return 2; // S_4
|
||||
case QPMS_PGS_TH: // A_4 x Z_2
|
||||
case QPMS_PGS_O: // S_4
|
||||
case QPMS_PGS_OH: // return 3; // S_4 x Z_2
|
||||
case QPMS_PGS_I: // A_5
|
||||
case QPMS_PGS_IH: // A_5 x Z_2
|
||||
|
||||
// Continuous axial groups
|
||||
case QPMS_PGS_CINF:
|
||||
case QPMS_PGS_CINFH:
|
||||
case QPMS_PGS_CINFV:
|
||||
case QPMS_PGS_DINF:
|
||||
case QPMS_PGS_DINFH:
|
||||
|
||||
// Remaining continuous groups
|
||||
case QPMS_PGS_SO3:
|
||||
case QPMS_PGS_O3:
|
||||
QPMS_NOT_IMPLEMENTED("Not yet implemented for this point group class.");
|
||||
default:
|
||||
QPMS_WTF;
|
||||
}
|
||||
}
|
|
@ -49,53 +49,9 @@ int qpms_pg_irot3_approx_cmp_v(const void *, const void *);
|
|||
|
||||
/// Returns the order of a given 3D point group type.
|
||||
/** For infinite groups returns 0. */
|
||||
static inline qpms_gmi_t qpms_pg_order(qpms_pointgroup_class cls, ///< Point group class.
|
||||
qpms_gmi_t qpms_pg_order(qpms_pointgroup_class cls, ///< Point group class.
|
||||
qpms_gmi_t n ///< Number of rotations around main axis (only for finite axial groups).
|
||||
) {
|
||||
if (qpms_pg_is_finite_axial(cls))
|
||||
QPMS_ENSURE(n > 0, "n must be at least 1 for finite axial groups");
|
||||
switch(cls) {
|
||||
// Axial groups
|
||||
case QPMS_PGS_CN:
|
||||
return n;
|
||||
case QPMS_PGS_S2N:
|
||||
case QPMS_PGS_CNH:
|
||||
case QPMS_PGS_CNV:
|
||||
case QPMS_PGS_DN:
|
||||
return 2*n;
|
||||
case QPMS_PGS_DND:
|
||||
case QPMS_PGS_DNH:
|
||||
return 4*n;
|
||||
|
||||
// Remaining polyhedral groups
|
||||
case QPMS_PGS_T:
|
||||
return 12;
|
||||
case QPMS_PGS_TD:
|
||||
case QPMS_PGS_TH:
|
||||
case QPMS_PGS_O:
|
||||
return 24;
|
||||
case QPMS_PGS_OH:
|
||||
return 48;
|
||||
case QPMS_PGS_I:
|
||||
return 60;
|
||||
case QPMS_PGS_IH:
|
||||
return 120;
|
||||
|
||||
// Continuous axial groups
|
||||
case QPMS_PGS_CINF:
|
||||
case QPMS_PGS_CINFH:
|
||||
case QPMS_PGS_CINFV:
|
||||
case QPMS_PGS_DINF:
|
||||
case QPMS_PGS_DINFH:
|
||||
|
||||
// Remaining continuous groups
|
||||
case QPMS_PGS_SO3:
|
||||
case QPMS_PGS_O3:
|
||||
return 0; // 0 is infinity :-)
|
||||
default:
|
||||
QPMS_WTF;
|
||||
}
|
||||
}
|
||||
);
|
||||
|
||||
/// Generates the canonical elements of a given 3D point group type.
|
||||
/** Uses the canonical generators and DPS. */
|
||||
|
@ -107,152 +63,15 @@ qpms_irot3_t *qpms_pg_canonical_elems(
|
|||
|
||||
/// Returns the number of canonical generators of a given 3D point group type.
|
||||
/** TODO what does it do for infinite (Lie) groups? */
|
||||
static inline qpms_gmi_t qpms_pg_genset_size(qpms_pointgroup_class cls, ///< Point group class.
|
||||
qpms_gmi_t qpms_pg_genset_size(qpms_pointgroup_class cls, ///< Point group class.
|
||||
qpms_gmi_t n ///< Number of rotations around main axis (only for axial groups).
|
||||
) {
|
||||
if (qpms_pg_is_finite_axial(cls)) {
|
||||
QPMS_ENSURE(n > 0, "n must be at least 1 for finite axial groups");
|
||||
// n = 1 needs special care:
|
||||
if (n==1)
|
||||
switch(cls) {
|
||||
case QPMS_PGS_CN: return 0; // triv.
|
||||
case QPMS_PGS_S2N: return 1; // Z_2
|
||||
case QPMS_PGS_CNH: return 1; // Dih_1
|
||||
case QPMS_PGS_CNV: return 1; // Dih_1
|
||||
case QPMS_PGS_DN: return 1; // Dih_1
|
||||
case QPMS_PGS_DND: return 2; // Dih_2
|
||||
case QPMS_PGS_DNH: return 2; // Dih_1 x Dih_1
|
||||
default: QPMS_WTF;
|
||||
}
|
||||
}
|
||||
|
||||
switch(cls) {
|
||||
// Axial groups
|
||||
case QPMS_PGS_CN: return 1; // Z_n
|
||||
case QPMS_PGS_S2N: return 1; // Z_{2n}
|
||||
case QPMS_PGS_CNH: return 2; // Z_n x Dih_1
|
||||
case QPMS_PGS_CNV: return 2; // Dih_n
|
||||
case QPMS_PGS_DN: return 2; // Dih_n
|
||||
case QPMS_PGS_DND: return 2; // Dih_2n
|
||||
case QPMS_PGS_DNH: return 3; // Dih_n x Dih_1
|
||||
|
||||
// Remaining polyhedral groups
|
||||
case QPMS_PGS_T: // return ???; // A_4
|
||||
case QPMS_PGS_TD: // return 2; // S_4
|
||||
case QPMS_PGS_TH: // A_4 x Z_2
|
||||
case QPMS_PGS_O: // S_4
|
||||
case QPMS_PGS_OH: // return 3; // S_4 x Z_2
|
||||
case QPMS_PGS_I: // A_5
|
||||
case QPMS_PGS_IH: // A_5 x Z_2
|
||||
|
||||
// Continuous axial groups
|
||||
case QPMS_PGS_CINF:
|
||||
case QPMS_PGS_CINFH:
|
||||
case QPMS_PGS_CINFV:
|
||||
case QPMS_PGS_DINF:
|
||||
case QPMS_PGS_DINFH:
|
||||
|
||||
// Remaining continuous groups
|
||||
case QPMS_PGS_SO3:
|
||||
case QPMS_PGS_O3:
|
||||
QPMS_NOT_IMPLEMENTED("Not yet implemented for this point group class.");
|
||||
default:
|
||||
QPMS_WTF;
|
||||
}
|
||||
}
|
||||
);
|
||||
|
||||
/// Fills an array of canonical generators of a given 3D point group type.
|
||||
/** TODO what does it do for infinite (Lie) groups? */
|
||||
static inline qpms_gmi_t qpms_pg_genset(qpms_pointgroup_class cls, ///< Point group class.
|
||||
qpms_gmi_t qpms_pg_genset(qpms_pointgroup_class cls, ///< Point group class.
|
||||
qpms_gmi_t n, ///< Number of rotations around main axis (only for axial groups).
|
||||
qpms_irot3_t gen[] ///< Target generator array
|
||||
) {
|
||||
if (qpms_pg_is_finite_axial(cls)) {
|
||||
QPMS_ENSURE(n > 0, "n must be at least 1 for finite axial groups");
|
||||
// n = 1 needs special care:
|
||||
if (n==1)
|
||||
switch(cls) {
|
||||
case QPMS_PGS_CN:
|
||||
return 0; // triv.
|
||||
case QPMS_PGS_S2N:
|
||||
gen[0] = QPMS_IROT3_INVERSION;
|
||||
return 1; // Z_2
|
||||
case QPMS_PGS_CNH:
|
||||
gen[0] = QPMS_IROT3_ZFLIP;
|
||||
return 1; // Dih_1
|
||||
case QPMS_PGS_CNV:
|
||||
gen[0] = QPMS_IROT3_XFLIP;
|
||||
return 1; // Dih_1
|
||||
case QPMS_PGS_DN:
|
||||
gen[0] = QPMS_IROT3_XROT_PI; // CHECKME
|
||||
return 1; // Dih_1
|
||||
case QPMS_PGS_DND:
|
||||
gen[0] = QPMS_IROT3_INVERSION;
|
||||
gen[1] = QPMS_IROT3_XFLIP;
|
||||
return 2; // Dih_2
|
||||
case QPMS_PGS_DNH: // CHECKME
|
||||
gen[0] = QPMS_IROT3_ZFLIP;
|
||||
gen[1] = QPMS_IROT3_XFLIP;
|
||||
return 2; // Dih_1 x Dih_1
|
||||
default: QPMS_WTF;
|
||||
}
|
||||
}
|
||||
|
||||
switch(cls) {
|
||||
// Axial groups
|
||||
case QPMS_PGS_CN:
|
||||
gen[0] = qpms_irot3_zrot_Nk(n, 1);
|
||||
return 1; // Z_n
|
||||
case QPMS_PGS_S2N:
|
||||
gen[0].rot = qpms_quat_zrot_Nk(2*n, 1);
|
||||
gen[0].det = -1;
|
||||
return 1; // Z_{2n}
|
||||
case QPMS_PGS_CNH:
|
||||
gen[0] = qpms_irot3_zrot_Nk(n, 1);
|
||||
gen[1] = QPMS_IROT3_ZFLIP;
|
||||
return 2; // Z_n x Dih_1
|
||||
case QPMS_PGS_CNV:
|
||||
gen[0] = qpms_irot3_zrot_Nk(n, 1);
|
||||
gen[1] = QPMS_IROT3_XFLIP;
|
||||
return 2; // Dih_n
|
||||
case QPMS_PGS_DN:
|
||||
gen[0] = qpms_irot3_zrot_Nk(n, 1);
|
||||
gen[1] = QPMS_IROT3_XROT_PI;
|
||||
return 2; // Dih_n
|
||||
case QPMS_PGS_DND:
|
||||
gen[0].rot = qpms_quat_zrot_Nk(2*n, 1);
|
||||
gen[0].det = -1;
|
||||
gen[1] = QPMS_IROT3_XFLIP;
|
||||
return 2; // Dih_2n
|
||||
case QPMS_PGS_DNH:
|
||||
gen[0] = qpms_irot3_zrot_Nk(n, 1);
|
||||
gen[1] = QPMS_IROT3_ZFLIP;
|
||||
gen[2] = QPMS_IROT3_XFLIP;
|
||||
return 3; // Dih_n x Dih_1
|
||||
|
||||
// Remaining polyhedral groups
|
||||
case QPMS_PGS_T: // return ???; // A_4
|
||||
case QPMS_PGS_TD: // return 2; // S_4
|
||||
case QPMS_PGS_TH: // A_4 x Z_2
|
||||
case QPMS_PGS_O: // S_4
|
||||
case QPMS_PGS_OH: // return 3; // S_4 x Z_2
|
||||
case QPMS_PGS_I: // A_5
|
||||
case QPMS_PGS_IH: // A_5 x Z_2
|
||||
|
||||
// Continuous axial groups
|
||||
case QPMS_PGS_CINF:
|
||||
case QPMS_PGS_CINFH:
|
||||
case QPMS_PGS_CINFV:
|
||||
case QPMS_PGS_DINF:
|
||||
case QPMS_PGS_DINFH:
|
||||
|
||||
// Remaining continuous groups
|
||||
case QPMS_PGS_SO3:
|
||||
case QPMS_PGS_O3:
|
||||
QPMS_NOT_IMPLEMENTED("Not yet implemented for this point group class.");
|
||||
default:
|
||||
QPMS_WTF;
|
||||
}
|
||||
}
|
||||
);
|
||||
|
||||
#endif //POINTGROUPS_H
|
||||
|
|
Loading…
Reference in New Issue