Move stuff from pointgroup.h to pointgroups.c

Former-commit-id: 70431c71975fdbe21be76cf4d28f1f59614bd577
This commit is contained in:
Marek Nečada 2019-07-24 11:28:44 +03:00
parent 46e82e55e2
commit 36ea30952c
2 changed files with 203 additions and 187 deletions

View File

@ -90,6 +90,203 @@ qpms_irot3_t *qpms_pg_canonical_elems(qpms_irot3_t *target,
} }
/// Returns the order of a given 3D point group type.
/** For infinite groups returns 0. */
qpms_gmi_t qpms_pg_order(qpms_pointgroup_class cls, ///< Point group class.
qpms_gmi_t n ///< Number of rotations around main axis (only for finite axial groups).
) {
if (qpms_pg_is_finite_axial(cls))
QPMS_ENSURE(n > 0, "n must be at least 1 for finite axial groups");
switch(cls) {
// Axial groups
case QPMS_PGS_CN:
return n;
case QPMS_PGS_S2N:
case QPMS_PGS_CNH:
case QPMS_PGS_CNV:
case QPMS_PGS_DN:
return 2*n;
case QPMS_PGS_DND:
case QPMS_PGS_DNH:
return 4*n;
// Remaining polyhedral groups
case QPMS_PGS_T:
return 12;
case QPMS_PGS_TD:
case QPMS_PGS_TH:
case QPMS_PGS_O:
return 24;
case QPMS_PGS_OH:
return 48;
case QPMS_PGS_I:
return 60;
case QPMS_PGS_IH:
return 120;
// Continuous axial groups
case QPMS_PGS_CINF:
case QPMS_PGS_CINFH:
case QPMS_PGS_CINFV:
case QPMS_PGS_DINF:
case QPMS_PGS_DINFH:
// Remaining continuous groups
case QPMS_PGS_SO3:
case QPMS_PGS_O3:
return 0; // 0 is infinity :-)
default:
QPMS_WTF;
}
}
/// Returns the number of canonical generators of a given 3D point group type.
/** TODO what does it do for infinite (Lie) groups? */
qpms_gmi_t qpms_pg_genset_size(qpms_pointgroup_class cls, ///< Point group class.
qpms_gmi_t n ///< Number of rotations around main axis (only for axial groups).
) {
if (qpms_pg_is_finite_axial(cls)) {
QPMS_ENSURE(n > 0, "n must be at least 1 for finite axial groups");
// n = 1 needs special care:
if (n==1)
switch(cls) {
case QPMS_PGS_CN: return 0; // triv.
case QPMS_PGS_S2N: return 1; // Z_2
case QPMS_PGS_CNH: return 1; // Dih_1
case QPMS_PGS_CNV: return 1; // Dih_1
case QPMS_PGS_DN: return 1; // Dih_1
case QPMS_PGS_DND: return 2; // Dih_2
case QPMS_PGS_DNH: return 2; // Dih_1 x Dih_1
default: QPMS_WTF;
}
}
switch(cls) {
// Axial groups
case QPMS_PGS_CN: return 1; // Z_n
case QPMS_PGS_S2N: return 1; // Z_{2n}
case QPMS_PGS_CNH: return 2; // Z_n x Dih_1
case QPMS_PGS_CNV: return 2; // Dih_n
case QPMS_PGS_DN: return 2; // Dih_n
case QPMS_PGS_DND: return 2; // Dih_2n
case QPMS_PGS_DNH: return 3; // Dih_n x Dih_1
// Remaining polyhedral groups
case QPMS_PGS_T: // return ???; // A_4
case QPMS_PGS_TD: // return 2; // S_4
case QPMS_PGS_TH: // A_4 x Z_2
case QPMS_PGS_O: // S_4
case QPMS_PGS_OH: // return 3; // S_4 x Z_2
case QPMS_PGS_I: // A_5
case QPMS_PGS_IH: // A_5 x Z_2
// Continuous axial groups
case QPMS_PGS_CINF:
case QPMS_PGS_CINFH:
case QPMS_PGS_CINFV:
case QPMS_PGS_DINF:
case QPMS_PGS_DINFH:
// Remaining continuous groups
case QPMS_PGS_SO3:
case QPMS_PGS_O3:
QPMS_NOT_IMPLEMENTED("Not yet implemented for this point group class.");
default:
QPMS_WTF;
}
}
/// Fills an array of canonical generators of a given 3D point group type.
/** TODO what does it do for infinite (Lie) groups? */
qpms_gmi_t qpms_pg_genset(qpms_pointgroup_class cls, ///< Point group class.
qpms_gmi_t n, ///< Number of rotations around main axis (only for axial groups).
qpms_irot3_t gen[] ///< Target generator array
) {
if (qpms_pg_is_finite_axial(cls)) {
QPMS_ENSURE(n > 0, "n must be at least 1 for finite axial groups");
// n = 1 needs special care:
if (n==1)
switch(cls) {
case QPMS_PGS_CN:
return 0; // triv.
case QPMS_PGS_S2N:
gen[0] = QPMS_IROT3_INVERSION;
return 1; // Z_2
case QPMS_PGS_CNH:
gen[0] = QPMS_IROT3_ZFLIP;
return 1; // Dih_1
case QPMS_PGS_CNV:
gen[0] = QPMS_IROT3_XFLIP;
return 1; // Dih_1
case QPMS_PGS_DN:
gen[0] = QPMS_IROT3_XROT_PI; // CHECKME
return 1; // Dih_1
case QPMS_PGS_DND:
gen[0] = QPMS_IROT3_INVERSION;
gen[1] = QPMS_IROT3_XFLIP;
return 2; // Dih_2
case QPMS_PGS_DNH: // CHECKME
gen[0] = QPMS_IROT3_ZFLIP;
gen[1] = QPMS_IROT3_XFLIP;
return 2; // Dih_1 x Dih_1
default: QPMS_WTF;
}
}
switch(cls) {
// Axial groups
case QPMS_PGS_CN:
gen[0] = qpms_irot3_zrot_Nk(n, 1);
return 1; // Z_n
case QPMS_PGS_S2N:
gen[0].rot = qpms_quat_zrot_Nk(2*n, 1);
gen[0].det = -1;
return 1; // Z_{2n}
case QPMS_PGS_CNH:
gen[0] = qpms_irot3_zrot_Nk(n, 1);
gen[1] = QPMS_IROT3_ZFLIP;
return 2; // Z_n x Dih_1
case QPMS_PGS_CNV:
gen[0] = qpms_irot3_zrot_Nk(n, 1);
gen[1] = QPMS_IROT3_XFLIP;
return 2; // Dih_n
case QPMS_PGS_DN:
gen[0] = qpms_irot3_zrot_Nk(n, 1);
gen[1] = QPMS_IROT3_XROT_PI;
return 2; // Dih_n
case QPMS_PGS_DND:
gen[0].rot = qpms_quat_zrot_Nk(2*n, 1);
gen[0].det = -1;
gen[1] = QPMS_IROT3_XFLIP;
return 2; // Dih_2n
case QPMS_PGS_DNH:
gen[0] = qpms_irot3_zrot_Nk(n, 1);
gen[1] = QPMS_IROT3_ZFLIP;
gen[2] = QPMS_IROT3_XFLIP;
return 3; // Dih_n x Dih_1
// Remaining polyhedral groups
case QPMS_PGS_T: // return ???; // A_4
case QPMS_PGS_TD: // return 2; // S_4
case QPMS_PGS_TH: // A_4 x Z_2
case QPMS_PGS_O: // S_4
case QPMS_PGS_OH: // return 3; // S_4 x Z_2
case QPMS_PGS_I: // A_5
case QPMS_PGS_IH: // A_5 x Z_2
// Continuous axial groups
case QPMS_PGS_CINF:
case QPMS_PGS_CINFH:
case QPMS_PGS_CINFV:
case QPMS_PGS_DINF:
case QPMS_PGS_DINFH:
// Remaining continuous groups
case QPMS_PGS_SO3:
case QPMS_PGS_O3:
QPMS_NOT_IMPLEMENTED("Not yet implemented for this point group class.");
default:
QPMS_WTF;
}
}

View File

@ -49,53 +49,9 @@ int qpms_pg_irot3_approx_cmp_v(const void *, const void *);
/// Returns the order of a given 3D point group type. /// Returns the order of a given 3D point group type.
/** For infinite groups returns 0. */ /** For infinite groups returns 0. */
static inline qpms_gmi_t qpms_pg_order(qpms_pointgroup_class cls, ///< Point group class. qpms_gmi_t qpms_pg_order(qpms_pointgroup_class cls, ///< Point group class.
qpms_gmi_t n ///< Number of rotations around main axis (only for finite axial groups). qpms_gmi_t n ///< Number of rotations around main axis (only for finite axial groups).
) { );
if (qpms_pg_is_finite_axial(cls))
QPMS_ENSURE(n > 0, "n must be at least 1 for finite axial groups");
switch(cls) {
// Axial groups
case QPMS_PGS_CN:
return n;
case QPMS_PGS_S2N:
case QPMS_PGS_CNH:
case QPMS_PGS_CNV:
case QPMS_PGS_DN:
return 2*n;
case QPMS_PGS_DND:
case QPMS_PGS_DNH:
return 4*n;
// Remaining polyhedral groups
case QPMS_PGS_T:
return 12;
case QPMS_PGS_TD:
case QPMS_PGS_TH:
case QPMS_PGS_O:
return 24;
case QPMS_PGS_OH:
return 48;
case QPMS_PGS_I:
return 60;
case QPMS_PGS_IH:
return 120;
// Continuous axial groups
case QPMS_PGS_CINF:
case QPMS_PGS_CINFH:
case QPMS_PGS_CINFV:
case QPMS_PGS_DINF:
case QPMS_PGS_DINFH:
// Remaining continuous groups
case QPMS_PGS_SO3:
case QPMS_PGS_O3:
return 0; // 0 is infinity :-)
default:
QPMS_WTF;
}
}
/// Generates the canonical elements of a given 3D point group type. /// Generates the canonical elements of a given 3D point group type.
/** Uses the canonical generators and DPS. */ /** Uses the canonical generators and DPS. */
@ -107,152 +63,15 @@ qpms_irot3_t *qpms_pg_canonical_elems(
/// Returns the number of canonical generators of a given 3D point group type. /// Returns the number of canonical generators of a given 3D point group type.
/** TODO what does it do for infinite (Lie) groups? */ /** TODO what does it do for infinite (Lie) groups? */
static inline qpms_gmi_t qpms_pg_genset_size(qpms_pointgroup_class cls, ///< Point group class. qpms_gmi_t qpms_pg_genset_size(qpms_pointgroup_class cls, ///< Point group class.
qpms_gmi_t n ///< Number of rotations around main axis (only for axial groups). qpms_gmi_t n ///< Number of rotations around main axis (only for axial groups).
) { );
if (qpms_pg_is_finite_axial(cls)) {
QPMS_ENSURE(n > 0, "n must be at least 1 for finite axial groups");
// n = 1 needs special care:
if (n==1)
switch(cls) {
case QPMS_PGS_CN: return 0; // triv.
case QPMS_PGS_S2N: return 1; // Z_2
case QPMS_PGS_CNH: return 1; // Dih_1
case QPMS_PGS_CNV: return 1; // Dih_1
case QPMS_PGS_DN: return 1; // Dih_1
case QPMS_PGS_DND: return 2; // Dih_2
case QPMS_PGS_DNH: return 2; // Dih_1 x Dih_1
default: QPMS_WTF;
}
}
switch(cls) {
// Axial groups
case QPMS_PGS_CN: return 1; // Z_n
case QPMS_PGS_S2N: return 1; // Z_{2n}
case QPMS_PGS_CNH: return 2; // Z_n x Dih_1
case QPMS_PGS_CNV: return 2; // Dih_n
case QPMS_PGS_DN: return 2; // Dih_n
case QPMS_PGS_DND: return 2; // Dih_2n
case QPMS_PGS_DNH: return 3; // Dih_n x Dih_1
// Remaining polyhedral groups
case QPMS_PGS_T: // return ???; // A_4
case QPMS_PGS_TD: // return 2; // S_4
case QPMS_PGS_TH: // A_4 x Z_2
case QPMS_PGS_O: // S_4
case QPMS_PGS_OH: // return 3; // S_4 x Z_2
case QPMS_PGS_I: // A_5
case QPMS_PGS_IH: // A_5 x Z_2
// Continuous axial groups
case QPMS_PGS_CINF:
case QPMS_PGS_CINFH:
case QPMS_PGS_CINFV:
case QPMS_PGS_DINF:
case QPMS_PGS_DINFH:
// Remaining continuous groups
case QPMS_PGS_SO3:
case QPMS_PGS_O3:
QPMS_NOT_IMPLEMENTED("Not yet implemented for this point group class.");
default:
QPMS_WTF;
}
}
/// Fills an array of canonical generators of a given 3D point group type. /// Fills an array of canonical generators of a given 3D point group type.
/** TODO what does it do for infinite (Lie) groups? */ /** TODO what does it do for infinite (Lie) groups? */
static inline qpms_gmi_t qpms_pg_genset(qpms_pointgroup_class cls, ///< Point group class. qpms_gmi_t qpms_pg_genset(qpms_pointgroup_class cls, ///< Point group class.
qpms_gmi_t n, ///< Number of rotations around main axis (only for axial groups). qpms_gmi_t n, ///< Number of rotations around main axis (only for axial groups).
qpms_irot3_t gen[] ///< Target generator array qpms_irot3_t gen[] ///< Target generator array
) { );
if (qpms_pg_is_finite_axial(cls)) {
QPMS_ENSURE(n > 0, "n must be at least 1 for finite axial groups");
// n = 1 needs special care:
if (n==1)
switch(cls) {
case QPMS_PGS_CN:
return 0; // triv.
case QPMS_PGS_S2N:
gen[0] = QPMS_IROT3_INVERSION;
return 1; // Z_2
case QPMS_PGS_CNH:
gen[0] = QPMS_IROT3_ZFLIP;
return 1; // Dih_1
case QPMS_PGS_CNV:
gen[0] = QPMS_IROT3_XFLIP;
return 1; // Dih_1
case QPMS_PGS_DN:
gen[0] = QPMS_IROT3_XROT_PI; // CHECKME
return 1; // Dih_1
case QPMS_PGS_DND:
gen[0] = QPMS_IROT3_INVERSION;
gen[1] = QPMS_IROT3_XFLIP;
return 2; // Dih_2
case QPMS_PGS_DNH: // CHECKME
gen[0] = QPMS_IROT3_ZFLIP;
gen[1] = QPMS_IROT3_XFLIP;
return 2; // Dih_1 x Dih_1
default: QPMS_WTF;
}
}
switch(cls) {
// Axial groups
case QPMS_PGS_CN:
gen[0] = qpms_irot3_zrot_Nk(n, 1);
return 1; // Z_n
case QPMS_PGS_S2N:
gen[0].rot = qpms_quat_zrot_Nk(2*n, 1);
gen[0].det = -1;
return 1; // Z_{2n}
case QPMS_PGS_CNH:
gen[0] = qpms_irot3_zrot_Nk(n, 1);
gen[1] = QPMS_IROT3_ZFLIP;
return 2; // Z_n x Dih_1
case QPMS_PGS_CNV:
gen[0] = qpms_irot3_zrot_Nk(n, 1);
gen[1] = QPMS_IROT3_XFLIP;
return 2; // Dih_n
case QPMS_PGS_DN:
gen[0] = qpms_irot3_zrot_Nk(n, 1);
gen[1] = QPMS_IROT3_XROT_PI;
return 2; // Dih_n
case QPMS_PGS_DND:
gen[0].rot = qpms_quat_zrot_Nk(2*n, 1);
gen[0].det = -1;
gen[1] = QPMS_IROT3_XFLIP;
return 2; // Dih_2n
case QPMS_PGS_DNH:
gen[0] = qpms_irot3_zrot_Nk(n, 1);
gen[1] = QPMS_IROT3_ZFLIP;
gen[2] = QPMS_IROT3_XFLIP;
return 3; // Dih_n x Dih_1
// Remaining polyhedral groups
case QPMS_PGS_T: // return ???; // A_4
case QPMS_PGS_TD: // return 2; // S_4
case QPMS_PGS_TH: // A_4 x Z_2
case QPMS_PGS_O: // S_4
case QPMS_PGS_OH: // return 3; // S_4 x Z_2
case QPMS_PGS_I: // A_5
case QPMS_PGS_IH: // A_5 x Z_2
// Continuous axial groups
case QPMS_PGS_CINF:
case QPMS_PGS_CINFH:
case QPMS_PGS_CINFV:
case QPMS_PGS_DINF:
case QPMS_PGS_DINFH:
// Remaining continuous groups
case QPMS_PGS_SO3:
case QPMS_PGS_O3:
QPMS_NOT_IMPLEMENTED("Not yet implemented for this point group class.");
default:
QPMS_WTF;
}
}
#endif //POINTGROUPS_H #endif //POINTGROUPS_H